Chứng minh rằng trong 20 số tự nhiên bất kì, luôn có thể chọn một hay nhiều số mà tổng của chúng chia hết cho 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1
ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)
\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)
Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)
b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?
Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)
Theo bài ta có các giả thiết sau:
\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)
\(m^2⋮n^2\Rightarrow m⋮n\)(2)
=> Đặt m=kn (k là số tự nhiên, K>1)
Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Vậy nên k=2 hoặc bằng 3
Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
+) Với k=2
Ta có: \(\overline{dcba}=4.\overline{abcd}\)
Vì \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)
và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)
@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)
Nên a=1.
Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1
+) Với K=3
tương tự lập luận trên ta có a=1
Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9
Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)
\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9
=> b=0; c=8
=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán
Ây za cách này khá là cùi bắp nhưng mà em tham khảo nhé:
Lấy điểm K đối xứng với C qua O
Xét tam giác CKB có: O là trung điểm CK , M là trung điểm BC
Gọi N là điểm đối xứng với O qua M
Tam giác OCM=tam giác NBM
=> OC//BN
OC=BN
Tam giác OBN = tam giác BOK (1)
=> ON=KB
mà OM=1/2ON
=> OM=1/2KB
Từ (1) suy ra đc OM//KB
mà OM//AH ( cùng vuông Bc)
=> KB//AH (3)
Chứng minh tương tự => BH//KA (4)
Từ (3), (4) chứng minh đc tam giác KBA=HAB
=> KB=HA
=> OM=1/2 AH
Sử dụng định lí Ta let
OM//AH=> \(\frac{GM}{AG}=\frac{OM}{AH}=\frac{1}{2}\)
mà AM là đường trung tuyến
=> G là trọng tâm.
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn,+AD+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC+t%E1%BA%A1i+D.+X%C3%A1c+%C4%91%E1%BB%8Bnh+I,+J+sao+cho+AB+l%C3%A0+trung+tr%E1%BB%A5c+c%E1%BB%A7a+DI;+AC+l%C3%A0+trung+tr%E1%BB%B1c+c%E1%BB%A7a+DJ;+IJ+c%E1%BA%AFt+AB,+AC+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+%E1%BB%9F+L+v%C3%A0+K.+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:++Tam+gi%C3%A1c+AIJ+c%C3%A2n.DA+l%C3%A0+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+LDK.N%E1%BA%BFu+D+l%C3%A0+1+%C4%91i%E1%BB%83m+t%C3%B9y+%C3%BD+tr%C3%AAn+BC.+Ch%E1%BB%A9ng+minh+s%E1%BB%91+%C4%91o+g%C3%B3c+IAJ+kh%C3%B4ng+%C4%91%E1%BB%95i+v%C3%A0+v%E1%BB%8B+tr%C3%AD+D+tr%C3%AAn+BC+%C4%91%E1%BB%83+IJ+nh%E1%BB%8F+nh%E1%BA%A5t.&id=32357
Bạn xem ở link này nhé
Anh - Em = 8
[Anh 5 năm trước] bằng tuổi anh hiện nay trừ 5 tuổi
[Em 8 năm sau] bằng tuổi em hiện nay cộng thêm 8 tuổi
Khi đó hiệu tuổi anh và em giảm 5 + 8 = 13 tuổi, giảm hơn chênh lệch tuổi anh và em hiện nay (chênh lệch giữa tuổi anh và em hiện nay là 8 tuổi)
=> [Em 8 năm sau] hơn [Anh 5 năm trước] là 13 - 8 = 5 tuổi.
Tỉ lệ: [Em 8 năm sau] và [Anh 5 năm trước] bằng 4 : 3
Đây là bài toán tìm 2 số biết hiệu và tỉ.
Gọi [Anh 5 năm trước] là 3 phần thì [Em 8 năm sau] là 4 phần.
=> Hiệu là: 4 - 3 = 1 phần và bằng 5 tuổi
=> 1 phần = 5 tuổi
=> [Anh 5 năm trước] = 3 phân x 5 = 15 tuổi
[Em 8 năm sau] = 4 phần x 5 = 20 tuổi
=> [Anh hiện nay] = 15 + 5 = 20 tuổi (vì 5 năm trước đã là 15 tuổi)
[Em hiện nay] = 20 tuổi - 8 = 12 tuổi (Vì 8 năm sau là 20 tuổi)
Đáp số: Anh: 20 tuổi, em: 12 tuổi
Gọi tuổi anh là x (tuổi); tuổi em là y (tuổi)
Độ tuổi anh cách đây 5 năm; tuổi em sau 8 năm tỉ lệ với 3 và 4 nên ta có:
(x-5)/3 = (y+8)/4
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
(x-5-y-8)/3-4 = (8-13)/-1 = -5/-1 =5
(x-5)/3 = 5 suy ra x = 20
(y+8)/4 = 5 suy ra y = 12
Vậy tuổi anh là 20 tuổi ; tuổi em là 12 tuổi.
là em số 1 bởi vì lần nào em số 1 cũng được giữ lại đầu tiên
k cho mk nha
Bạn tham khảo ở đây nhé
Bài toán 120 - Học toán với OnlineMath
Ta có trong 5 số bất kỳ luôn tồn tại 3 số có tổng chia hết cho 3 .
Như vậy trong 9 số thì tồn tại 5 cặp , mỗi cặp 3 số có tổng chia hết cho 3
Mỗi cặp đồng dư 0,3,6 mod 5
Nếu 3 cặp cùng 1 lớp đồng dư ⇒ dpcm
Mà có 5 cặp ⇒ Có đầy đủ 3 lớp đồng dư ⇒ Tồn tại 5 số có tổng chia hết cho 5
Thay x = 0 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
0.P( 0 + 2 ) = (4 - 9). P(0) suy ra 5. P(0) = 0 hay P(0) = 0. Vậy x = 0 là nghiệm của đa thức.
Thay x = 3 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
3.P(5) = (9 - 9 ).P(3) suy ra P(5 ) = 0 . Vậy x = 5 là nghiệm của đa thức P(x).
Tương tự với x = - 3 ta có:
-3. P(-1) = (9 - 9). P(-3) suy ra P(-1) = 0. Vậy x = -1 cũng là nghiệm của đa thức P(x).
Vậy đa thức P(x) có ít nhất 3 nghiệm là: 0; 5; -1.
b, Giả sử P(x) có nghiệm nguyên là a. Khi đó sẽ có đa thức g(x) để: P(x) = g(x) (x - a).
P(1) = (1-a).g(1) là một số lẻ suy ra 1- a là số lẻ .Vậy a chẵn.
P(0) = a .g(0) là một số lẻ , suy ra a là số chẵn.
a không thể vừa là số lẻ, vừa là số chẵn. Ta có mâu thuẫn.
Vậy ta có ĐPCM.
Bùi Thị Vân ơi, khúc đầu câu a) là thay x=0 vài x.P(x+2) = (x^2-9) P(x) mà bạn thay bị sai thì phải.Bạn xem lại giúp mình
Ta có:
\(\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=4\) Dấu bằng xảy ra khi \(-1\le x\le3\)
\(\left|x+\frac{1}{2}\right|\ge0\) Dấu bằng xảy ra khi \(x=\frac{-1}{2}\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+1\right|+\left|3-x\right|\ge4\)Khi đó: \(\hept{\begin{cases}-1\le x\le3\\x=-\frac{1}{2}\end{cases}}\)\(\Rightarrow x=-\frac{1}{2}\)
Vậy B đạt giá trị nho nhất bằng 4 khi \(x=-\frac{1}{2}\)
bài này có trong violympic ko nhỉ