tính nhanh
1. 2/3 + 4/9 + 1/5 + 2/15 +3/2 - 17/18
2. 13/28 x 5/12 - 5/28 x 1/12
3. 19/4 x 15/23 - 15/4 x 7/23 + 15/4 x 11/23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối A vs N
a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF
=> AN//CE và AN =1/2. CE
=> AN=1/2.BC(vì BC = CE) => AN =BM(vì BM = 1/2. BC)
xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng) => tg ANMB là hbh=> MN//AB và AB=MN (1) ;
xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) => IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD
Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD) (2)
Từ (1),(2)=> IK=MN
Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD
Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD)
=> tg MNIK là hbh (đpcm)
b) Do tg MNIK là hbh ( câu a) mà G là gđ của IM và KN nên G là t/đ của IM là KN
=> IG=MG và KG=NG
Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM
K là t/đ của DG(gt) => Dk=KG => DK=KG=GN
xét tg ABC có: AM là đg trung tuyến (gt) và AI=IG=GM (cmt) => G là trọng tâm của tg ABC (*)
xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF (**)
Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF
=> Tg ABC và tg DEF có cùng trọng tâm là G (đpcm)
Nối A vs N
a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF
=> AN//CE và AN =1/2. CE
=> AN=1/2.BC(vì BC = CE) => AN =BM(vì BM = 1/2. BC)
xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng) => tg ANMB là hbh=> MN//AB và AB=MN (1) ;
xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) => IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD
Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD) (2)
Từ (1),(2)=> IK=MN
Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD
Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD)
=> tg MNIK là hbh (đpcm)
b) Do tg MNIK là hbh ( câu a) mà G là gđ của IM và KN nên G là t/đ của IM là KN
=> IG=MG và KG=NG
Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM
K là t/đ của DG(gt) => Dk=KG => DK=KG=GN
xét tg ABC có: AM là đg trung tuyến (gt) và AI=IG=GM (cmt) => G là trọng tâm của tg ABC (*)
xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF (**)
Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF
=> Tg ABC và tg DEF có cùng trọng tâm là G (đpcm)
Kẻ \(MI⊥AB,MJ⊥AC\)
Ta thấy \(\widehat{EAK}=\widehat{AMI}\) (Cùng phụ với \(\widehat{KAM}\))
Vậy nên \(\Delta EAK\sim\Delta AMI\left(g-g\right)\Rightarrow\frac{EA}{AM}=\frac{AK}{MI}=2.\frac{AK}{KC}\)
Tương tự : \(\Delta DAH\sim\Delta AMJ\left(g-g\right)\Rightarrow\frac{DA}{AM}=\frac{AH}{MJ}=2.\frac{AH}{BH}\)
Mà \(\Delta AHB\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{HB}{KC}\Rightarrow\frac{AH}{HB}=\frac{AK}{KC}\)
Vậy thì \(\frac{AE}{AM}=\frac{DE}{AM}\Rightarrow AE=ED.\)
Tam giác DEM có MA là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại M.
- \(m=0\)dễ thấy không thỏa mãn.
- \(m\ne0\):
\(\Delta'=\left(m-1\right)^2-3\left(m-2\right).m=-2m^2+4m+1\)
Để phương trình đã cho có hai nghiệm \(x_1,x_2\)thì \(\Delta'\ge0\Rightarrow-2m^2+4m+1\ge0\).
Khi phương trình có hai nghiệm \(x_1,x_2\), theo Viete ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1x_2=\frac{3\left(m-2\right)}{m}\end{cases}}\)
Ta có: \(x_1+2x_2=1\)
\(\Rightarrow\left(x_1+2x_2-1\right)\left(x_2+2x_1-1\right)=0\)
\(\Leftrightarrow5x_1x_2+2\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)+1=0\)
\(\Leftrightarrow2\left(x_1+x_2\right)^2-3\left(x_1+x_2\right)+x_1x_2+1=0\)
\(\Rightarrow2\left[\frac{2\left(m-1\right)}{m}\right]^2-\frac{6\left(m-1\right)}{m}+\frac{3\left(m-2\right)}{m}+1=0\)
\(\Leftrightarrow8\left(m-1\right)^2-6m\left(m-1\right)+3m\left(m-2\right)+m^2=0\)
\(\Leftrightarrow6m^2-16m+8=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\)
Thử lại đều thỏa mãn.
Ba số nguyên tố có tổng là \(38\)là một số chẵn nên trong ba số đó có số \(2\).
Tổng hai số còn lại là \(36\).
Gọi hai số đó là \(a,b\).
Ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=36^2-2ab\)
Để \(\left(a^2+b^2\right)_{max}\)thì \(ab\)đạt min.
Nếu \(a=b\)thì \(a=b=18\)không là số nguyên tố.
Không mất tính tổng quát, giả sử \(a>b>0\)
Ta có nhận xét rằng \(a-b\)càng lớn thì \(ab\)càng nhỏ.
Thật vậy, nếu ta thay \(a\)bằng \(a+1\)và \(b\)bằng \(b-1\)thì:
\(\left(a+1\right)\left(b-1\right)=ab-a+b-1=ab-\left(a-b\right)-1< ab\).
Do đó để thỏa mãn ycbt thì ta cần tìm hai số nguyên tố \(a,b\)sao cho \(a+b=36\)và \(b\)nhỏ nhất.
Với \(b=3\Rightarrow a=33\)loại.
Với \(b=5\Rightarrow a=31\)(thỏa mãn)
Vậy ba số nguyên tố thỏa mãn ycbt là \(2,5,31\).
Khi đó tổng bình phương lớn nhất là: \(2^2+5^2+31^2=990\).
Giả sử n2+9n+24 chia hết cho 25
=> (n+3)2+15 chia hết cho 5
=> n+3 chia hết cho 5
=> (n+3)2 chia hết cho 25
=> (n+3)2+15 không chia hết cho 25 ( Vô lý)
=> giả sử sai
=> đccm
Giả sử \(n^2+9n+24⋮25\)\(\Rightarrow n^2+9n+24⋮5\)(1)
Ta có \(n^2+9n+24\)\(=n^2+2n+7n+14+10\)\(=n\left(n+2\right)+7\left(n+2\right)+10\)\(=\left(n+2\right)\left(n+7\right)+10\)(2)
Từ (1) và (2)\(\Rightarrow\left(n+2\right)\left(n+7\right)+10⋮5\)
Mà \(10⋮5\)nên \(\left(n+2\right)\left(n+7\right)⋮5\), mà 5 là số nguyên tố nên 1 trong 2 số \(n+2;n+7\)chia hết cho 5
Khi \(n+2⋮5\)thì \(n+2+5⋮5\)hay \(n+7⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)
Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)
Khi \(n+7⋮5\)thì \(n+7-5⋮5\)hay \(n+2⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)
Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)
Vậy điều giả sử sai \(\Rightarrow n^2+9n+24⋮̸25\)
Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999
+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự
trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau
=>Mỗi Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần
+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần
riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)
Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần
+) từ 2000 đến 2013 có:
S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)
= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83
Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083
Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999
+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự
trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau
=>Mỗi Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần
+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần
riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)
Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần
+) từ 2000 đến 2013 có:
S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)
= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83
Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083 **** ☺
\(1,\frac{2}{3}+\frac{4}{9}+\frac{1}{5}+\frac{2}{15}+\frac{3}{2}-\frac{17}{18}\)
\(< =>\frac{4}{9}+\frac{3}{2}+\left(\frac{2}{3}+\frac{1}{5}+\frac{2}{15}\right)-\frac{17}{18}\)
\(< =>\frac{8}{18}+\frac{27}{18}+\left(\frac{10}{15}+\frac{3}{15}+\frac{2}{15}\right)-\frac{17}{18}\)
\(< =>\frac{35}{18}+1-\frac{17}{18}\)
\(< =>\frac{53}{18}-\frac{17}{18}\)
\(< =>2\)
\(2,\frac{13}{28}\cdot\frac{5}{12}-\frac{5}{28}\cdot\frac{1}{12}\)
\(< =>\left(\frac{13}{28}-\frac{5}{28}\right)\cdot\left(\frac{5}{12}-\frac{1}{12}\right)\)
\(< =>\frac{2}{7}\cdot\frac{1}{3}\)
\(< =>\frac{2}{21}\)
\(3,\frac{19}{4}\cdot\frac{15}{23}-\frac{15}{4}\cdot\frac{7}{23}+\frac{15}{4}\cdot\frac{11}{23}\)
\(< =>\frac{285}{92}-\frac{105}{92}+\frac{165}{92}\)
\(< =>\frac{15}{4}\)
cảm ơn bạn nha bạn chắc chăn đúng không