1 giải bóng bàn có 16 người tham gia, mỗi đối thủ đều đấu 1 trận với đối thủ khác
Chứng tỏ rằng:có thể chọn ra 5 đối thủ xếp thành hàng dọc sao cho mỗi người đứng trước đều thắng tất cả những người đứng sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=\frac{a}{b},y=\frac{c}{d}\)với \(a,b,c,d\inℤ^+;b,d\ne0;\left(a,b\right)=1;\left(c,d\right)=1\).
Ta có: \(x+\frac{1}{y}=\frac{a}{b}+\frac{d}{c}=\frac{ac+bd}{bc}\inℤ\)
\(\Rightarrow\hept{\begin{cases}ac+bd⋮b\\ac+bd⋮c\end{cases}}\Leftrightarrow\hept{\begin{cases}c⋮b\\b⋮c\end{cases}}\Leftrightarrow b=c\)(vì \(\left(a,b\right)=1,\left(c,d\right)=1\))
Tương tự ta cũng có \(a=d\).
Khi đó \(x=\frac{a}{b}=\frac{d}{c}=\frac{1}{y}\).
Bài toán ban đầu trở thành: tìm số hữu tỉ \(x>0\)để \(2x\inℤ,\frac{2}{x}\inℤ\).
\(2x\inℤ^+\Leftrightarrow x=\frac{a}{2}\)với \(a\inℤ^+\)
\(\frac{2}{x}=\frac{2}{\frac{a}{2}}=\frac{4}{a}\inℤ^+\)mà \(a\inℤ^+\)nên \(a\inƯ\left(4\right)=\left\{1;2;4\right\}\).
Từ đây bạn tìm ra được giá trị của \(x\)và \(y\).
Xét với \(k=100\)ta có tập \(\left\{101,102,...,200\right\}\). Dễ thấy không có hai số nào mà số này là bội của số kia.
Xét với \(k=101\):
Ta lấy ngẫu nhiên \(101\)số tự nhiên từ \(200\)số đã cho \(\left\{a_1,a_2,...,a_{101}\right\}\).
Ta biểu diễn \(101\)số này dưới dạng:
\(a_1=2^{x_1}m_1,a_2=2^{x_2}m_2,...,a_{101}=2^{x_{101}}m_{101}\)(với \(m_1,...,m_{101}\)là các số lẻ, \(x_1,...,x_{101}\)là các số tự nhiên)
Vì từ \(1\)đến \(200\)có \(100\)số tự nhiên lẻ nên trong \(101\)số đã lấy chắc chắn có ít nhất hai số khi biểu diễn dưới dạng trên có cùng giá trị \(m_i\). Khi đó hai số đó là bội của nhau.
Vậy \(k=101\)là giá trị nhỏ nhất cần tìm.
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
<=> ad + a2 + bd + ab = bc + bd + c2 + cd
<=> ad + a2 + bd + ab - bc - bd - c2 - cd = 0
<=> ad + a2 + ab - bc - c2 - cd = 0
<=> ( ad - cd ) + ( a2 - c2 ) + ( ab - bc ) = 0
<=> d( a - c ) + ( a - c )( a + c ) + b( a - c ) = 0
<=> ( a - c )( a + b + c + d ) = 0
<=> \(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(đpcm\right)}\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)
TH1: \(a+b+c+d=0\Rightarrowđpcm\)
TH2: \(a+b+c+d\ne0\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}=1\)
\(\Rightarrow a+b=b+c\)
\(\Rightarrow a=c\left(đpcm\right)\)
TH1: "Hòa đạt giải đồng" là đúng.
Tức là "Hoàng không đạt giải đồng" là sai nên Hoàng đạt giải đồng, khi đó Hòa và Hoàng đều đạt giải đồng, mâu thuẫn.
TH2: "Hoàng không đạt giải đồng" là đúng.
Khi đó Hoàng đạt giải vàng hoặc bạc, "Huy đạt giải đồng" là sai nên Huy đạt giải vàng hoặc bạc, khi đó Huy đạt giải đồng.
Khi đó câu "Huy không đạt giải bạc" là đúng, mâu thuẫn.
TH3: "Huy không đạt giải bạc" là đúng.
Huy đạt giải vàng hoặc đồng. "Hoàng không đạt giải đồng" là sai nên Hoàng đạt giải đồng, suy ra Huy đạt giải vàng.
Khi đó Hòa đạt giải bạc.
Chọn B.
Với \(n\ge3\)thì tích của \(n\)số tự nhiên liên tiếp chia hết cho \(3\)
mà \(4^n\equiv1\left(mod3\right),14\equiv2\left(mod3\right)\Rightarrow4^n-14\equiv2\left(mod3\right)\)do đó không thỏa mãn.
Thử trực tiếp với \(n=1\)và \(n=2\)thu được \(n=2\)thỏa mãn.
\(4^2-14=1.2\).
Vậy \(n=2\).
a) Ta có M + (5x2 - 2xy) = 6x2 + 9xy - y2
=> M = 6x2 + 9xy - y2 - (5x2 - 2xy) = x2 + 11xy - y2
b) Ta có M - (3xy - 4y2) = x2 - 7xy + 8y2
=> M = 3xy - 4y2 + x2 - 7xy + 8y2 = 4y2 - 4xy + x2
c) Ta có (25x2y - 13xy + y3) - M = 11x2y - 2y2
=> M = (25x2y - 13xy + y3) - (11x2y - 2y2) = 14x2y - 13xy + y3 + 2y2
d) Ta có M + (12x4 - 15x2y + 2xy2 + 7) = 0
=> M = -12x4 + 15x2y - 2xy2 - 7
Trong bài này ta có (-2)^66
Vì mũ của nó là số chẵn nên kết quả là số dương nhé bạn
Đánh số các người tham gia từ \(A_1\)đến \(A_{16}\).
Giả sử \(A_1\)thắng nhiều nhất.
Có: \(\frac{16\times15}{2}=120\)(ván đấu) suy ra \(A_1\)thắng \(\ge\frac{120}{16}=7,5\)
suy ra \(A_1\)thắng ít nhất \(8\)ván.
Không mất tính tổng quát, giả sử \(A_1\)thắng \(A_2,A_3,...,A_9\).
Giả sử trong những người này \(A_2\)thắng nhiều nhất.
\(A_2,...,A_9\)đánh \(\frac{8\times7}{2}=28\)(ván) suy ra \(A_2\)thắng \(\ge\frac{28}{8}=3,5\)
suy ra \(A_2\)thắng ít nhất \(4\)ván (khi đấu với \(A_3,...,A_9\))
Giả sử \(A_2\)thắng \(A_3,...,A_6\).
Giả sử \(A_3\)thắng nhiều nhất trong những người này.
\(A_3,...,A_6\)đánh \(\frac{4\times3}{2}=6\)(ván) suy ra \(A_3\)thắng \(\ge\frac{6}{4}=1,5\)
suy ra \(A_3\)thắng ít nhất \(2\)ván.
Giả sử \(A_3\)thắng \(A_4,A_5\).
Khi đó giả sử \(A_4\)thắng \(A_5\)thì ta có dãy thỏa mãn là: \(A_1,A_2,A_3,A_4,A_5\).
Ta có đpcm.
linh tinh