Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có bài toán đúng với n=1
giả sử đúng với n=k
xét n=k+1:
\(29^{2\left(k+1\right)}-140\left(k+1\right)-1\)
\(=841.29^{2k}-140k-141=700.29^{2k}+141.\left(29^{2k}-140k-1\right)+19600k\)
mà \(\hept{\begin{cases}700.29^{2k}⋮700\\140\left(29^{2k}-140k-1\right)⋮700\\19600⋮700\end{cases}}\)bài toán đúng với n=k+1
Vậy theo nguyên lý quy nạp ta chứng minh được bài toán

\(B=2M-C=\left(2,0\right)\)
ta có tọa độ trung điểm H của AB là
\(H=\frac{3G-C}{2}=\left(-1,4\right)\)
Do đó \(\overrightarrow{BH}=\left(-3,4\right)\)đường cao kẻ từ C đi qua C và có VTPT là BH nên \(d:3x-4y+10=0\)

Ta cần chứng minh: \(3\left(a^2+b^2\right)+c^2\ge2\left(ab+bc+ca\right)\)
Nó đúng bởi \(3\left(a^2+b^2\right)+c^2-2\left(ab+bc+ca\right)=\left(a-b\right)^2+2\left(a-\frac{c}{2}\right)^2+2\left(b-\frac{c}{2}\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{\sqrt{5}};c=\frac{2}{\sqrt{5}}\)
Done!

Điều kiện: \(x^2-mx+4\ne0,\forall x\inℝ\)
Vì \(x^2+x+4>0,\forall x\inℝ\)
nên \(\left|\frac{x^2+x+4}{x^2-mx+4}\right|\le2,\forall x\inℝ\)
\(\Leftrightarrow x^2+x+4\le2\left(x^2-mx+4\right)\)
\(\Leftrightarrow x^2-\left(2m+1\right)x+4\ge0\)
\(\Leftrightarrow\frac{-5}{2}\le m\le\frac{-3}{2}\)

Ta có: \(4a^2-4b^2-\frac{3a}{b}-\frac{2b}{a}+8a+12b=4\left(a^2-b^2\right)-\frac{a}{b}-2\left(\frac{a}{b}+\frac{b}{a}\right)+8a+12b\)
\(=4\left(a-b\right)\left(a+b\right)-\frac{a}{b}-2\left(\frac{a}{b}+\frac{b}{a}\right)+8a+12b\)
\(\le4\left(a-b\right)-\frac{a}{b}-2\times2+8a+12b\)
\(\le4\left(a-b\right)-\frac{a\left(a+b\right)}{b}+8a+12b-4\)
\(=4a-4b-\frac{a^2}{b}-a+8a+12b-4\)
\(=11a+9b-4-\left(\frac{a^2}{b}+b\right)\)
\(\le11a+9a-4-2a\)
\(=9\left(a+b\right)-4\)
\(=5\)
Dấu "=" xảy ra khi a = b = 0,5

ta có
\(4a^2-4b^2-\frac{3a}{b}-\frac{2b}{a}+8a+12b=4\left(a-b\right)\left(a+b\right)-\frac{a\left(a+b\right)}{b}-2\left(\frac{a}{b}+\frac{b}{a}\right)+8a+12b\)
\(\le4a-4b-\frac{a^2}{b}-2.2+7a+12b=-\frac{a^2}{b}-b+11a+9b-4\le-2a+11a+9b-4\le9-4=5\)dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)