K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

a. Quang tự vẽ hình nhé.

Ta thấy \(\frac{AM}{AC}=\frac{AM}{AK}.\frac{AK}{AC}\). Mà theo định lý Ta let : \(\frac{AM}{AK}=\frac{AI}{AB};\frac{AK}{AC}=\frac{AN}{AI}\)

Như vậy thì \(\frac{AM}{AC}=\frac{AI}{AB}.\frac{AN}{AI}=\frac{AN}{AB}\)

Từ đó suy ra \(\frac{AM}{AC}=\frac{AN}{AB}\) hay MN // BC.

9 tháng 8 2016

a. \(\Delta BPC\sim\Delta BMH\left(g-g\right)\Rightarrow\frac{BP}{BM}=\frac{BC}{BH}\) hay BM.BC = BP.BH.

b. Ta có: \(\Delta HNB\sim\Delta HPC\left(g-g\right)\Rightarrow\frac{HN}{HB}=\frac{HP}{HC}\Rightarrow\Delta HNP\sim\Delta HBC\left(c-g-c\right)\)

hay góc PNH = HBC. Tương tự góc MNC = CBH. Vậy thì góc PNH = MNC, từ đó suy ra góc MNB = PNB (Cùng phụ với hai góc trên).

Vậy thi NA là phân giác góc PNM.

c. Ta thấy \(BC.AH=BC\left(HM-AM\right)=BC.MH-BC.AM=\frac{S}{2}-\frac{S_{ABC}}{2}\)

Tương tự \(AB.CH=\frac{S}{2}-\frac{S_{AHC}}{2};AC.VH=\frac{S}{2}-\frac{S_{ABH}}{2}\)

Vậy thì \(BC.AH+AB.CH+AC.BH=\frac{3S}{2}-\frac{S_{ABC}+S_{AHC}+S_{AHB}}{2}=\frac{3S}{2}-\frac{S}{2}=S.\)

8 tháng 8 2016

ta có: \(x^3+y^3+z^3-\left(x^2+y^2+z^2\right)=0\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)) =0.
do \(x^2+y^2+z^2=1\)nên \(\left|x\right|\le1,\left|y\right|\le1,\left|z\right|\le1\Rightarrow\left(1-x\right)\ge0,\left(1-y\right)\ge0,\left(1-z\right)\ge0\)
vì vậy \(x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)\ge0\)
dấu bằng xảy ra khi \(\hept{\begin{cases}x^2\left(1-x\right)=0\\z^2\left(1-z\right)=0\\y^2\left(1-y\right)=0\end{cases}}\)
do vậy (x,y,z)=(1,0,0); (0,1,0); (0,0,1).

8 tháng 8 2016

- mik mới học lp 7 nên k giải đc 

8 tháng 8 2016

xét số dư của a, b khi chia cho 5 là: 0,1,2,3,4.
ta ghép cặp dần (0,0) (0,1),(0,2)...(3,4) thì chỉ có cặp (0,0) mới đảm bảo \(a^2+b^2+ab\)mới chia hết cho 5.
vậy a, b sẽ có tận cùng là 0 hoặc 5.
nếu a,b có cùng có chữ số tận cùng là 5 loại vì: \(a^2+b^2+ab\)là số lẻ không chia hết cho 2.
nếu a có  chữ số tận cùng bằng 5, b chữ số có tận cùng bằng 0 thì \(a^2+b^2+ab\)là số lẻ nên không chia hết cho 2. (loại vì \(a^2+b^2+ab\)chia hết cho 10).
a, b có chữu số tận cùng bằng 0 khi đó \(a^2+b^2+ab\)là số chẵn nên chia hết cho 2(thỏa mãn).
do a, b có chữ số tận cùng bằng 0 nên \(a^2,b^2,ab\)sẽ có tận cùng là 100 nên \(a^2+b^2+ab\)chia hết cho 100.

8 tháng 8 2016

\(a^2+b^2+ab\) chia hết cho 10

=> \(a^2+b^2+ab\) chia hết cho 2 và 5

\(a^2+b^2+ab=\left(a^2+b^2+2ab\right)-ab\)

\(=\left(a+b\right)^2-ab\)

Vì \(\left(a+b\right)^2;ab\) chia hết cho 2

=> \(\left(a+b\right)^2;ab\) cùng chẵn hoặc cùng lẻ

(+) Nếu \(\left(a+b\right)^2;ab\) (1)

=> a và b cùng lẻ

=> a+b chẵn ( mâu thuẫn với (1) )

=> a và b cùng là số chẵn

Để \(=\left(a+b\right)^2-ab\) chia hết cho 5 thì (a+b)^2 và ab có cúng số dư khi chia cho 10

Mình chỉ biết đến đó

Mà cũng ko chắc là đúng

8 tháng 8 2016

Xét tử số có dạng : \(\frac{1}{\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)}=\frac{1}{4}\left[\frac{1}{\left(2n+1\right)\left(2n+2\right)}-\frac{1}{\left(2n+2\right)\left(2n+3\right)}\right]\) với \(n\in N\)

Ta có : \(\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{2005.2007.2009}\)

\(=\frac{1}{4}.\left(\frac{1}{1.3}-\frac{1}{3.5}\right)+\frac{1}{4}.\left(\frac{1}{3.5}-\frac{1}{5.7}\right)+\frac{1}{4}\left(\frac{1}{5.7}-\frac{1}{7.9}\right)+...+\frac{1}{4}\left(\frac{1}{2005.2007}-\frac{1}{2007.2009}\right)\)

\(=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{2005.2007}-\frac{1}{2007.2009}\right)\)

\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{2007.2009}\right)\)

Xét mẫu số có dạng : \(\frac{1}{\left(2n+1\right)\sqrt{2n+3}+\left(2n+3\right)\sqrt{2n+1}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)

\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}=\frac{1}{2}.\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với  \(n\in N\)

Áp dụng : \(\frac{1}{1\sqrt{3}+3\sqrt{1}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{2007\sqrt{2009}+2009\sqrt{2007}}\)

\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{2007}}-\frac{1}{\sqrt{2009}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{2009}}\right)\)

Suy ra : \(M=\frac{\frac{1}{4}\left(\frac{1}{3}-\frac{1}{2007.2009}\right)}{\frac{1}{2}\left(1-\frac{1}{\sqrt{2009}}\right)}\)

Tới đây bài toán đã gọn hơn , bạn tự tính nhé :)

tôi chỉ giải được đến chỗ (x+a)(x+b)=2c(a+b) thôi

7 tháng 8 2016

bài này cứ nhân chéo lên rồi biện luận. chtt đi bạn

8 tháng 8 2016

a=b=0

a = b = 0

7 tháng 8 2016

Giả sử trong 2016 số hạng không có số nào bằng nhau.Không mất tính tổng quát ta giả sử:

\(a_1< a_2< a_3< ...........< a_{2016}\)

Vì \(a_1,a_2,......,a_{2016}\) đều là số nguyên dương nên ta suy ra:

\(a_1\ge1,a_2\ge2,.........,a_{2016}\ge2016\)

Suy ra:\(\frac{1}{a_1}+\frac{1}{a_2}+.........+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+.....+\left(\frac{1}{1024}+...+\frac{1}{2016}\right)\)

\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+.........+\frac{1}{2^{10}}.2^{10}=11< 12\)

Do đó điều giả sử là sai

Vậy trong 2016 số đã cho có ít nhất hai số bằng nhau

7 tháng 8 2016

éo bik 

7 tháng 8 2016

Chứng minh bằng phản chứng.

Giả sử c không phải cạnh nhỏ nhất, hay c lớn hơn hoặc bằng ít nhất một trong hai cạnh còn lại.

Giả sử cạnh đó là b. Ta có: \(b\le c\)

\(\Rightarrow a^2\ge5c^2-b^2\ge5c^2-c^2=4c^2\)

\(\Rightarrow a\ge2c\)

\(\Rightarrow b+c\le c+c=2c\le a\)

\(b+c\le a\) là một điều trái với bất đẳng thức tam giác \(b+c>a\)

Vậy điều giả sử sai.

Hay c là độ dài cạnh bé nhất,

7 tháng 8 2016

ok tớ camon =))

7 tháng 8 2016

B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2

B=3k+1 thì A =3n+6027k+2010 chia hét cho 3

B=3k+2 thì A=