K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

Trước hết ta chứng minh \(\frac{OA}{AM}+\frac{OB}{BN}+\frac{OC}{CP}=1\)

Thậy vậy \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{ON}{CP}=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{AOC}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}=1\)

Đặt \(\frac{OM}{AM}=x;\frac{ON}{BN}=y;\frac{OP}{CP}=z\Rightarrow x+y+z=1.\)

Khi đó \(a=\frac{OA}{OM}=\frac{AM-OM}{OM}=\frac{AM}{OM}-1=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\)

Tương tự \(\frac{OB}{ON}=b\Rightarrow y=\frac{1}{b+1};\frac{OC}{OP}=c\Rightarrow z=\frac{1}{c+1};\)

Vậy thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1.\)

Nếu cả a, b, c đều nhỏ hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}>\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)

Vậy phải tồn tại một tỉ số không nhỏ hơn 2.

Nếu cả a, b, c đều lớn hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)

Vậy phải tồn tại một tỉ số không lớn hơn 2.

23 tháng 8 2016

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT=A+B và xét

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\text{∑}\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\text{∑}\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\text{∑}\left(1-\frac{b^2}{1+b^2}\right)\ge\text{∑}\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\text{∑}ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

(Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu = khi a=b=c=1

11 tháng 1 2019

2 + 2 =22

22 tháng 8 2016

các bạn giúp mình nha mình đang cần gấp

25 tháng 8 2016

ko bít,tự làm

.

1
23 tháng 8 2016

Đây là một bài toán rất hay :)

???ng tr�n O_1: ???ng tr�n qua B_1 v?i t�m O ?o?n th?ng f: ?o?n th?ng [N, A] ?o?n th?ng g: ?o?n th?ng [N, B] ?o?n th?ng i: ?o?n th?ng [I, M] ?o?n th?ng l: ?o?n th?ng [A, N'] ?o?n th?ng m: ?o?n th?ng [N', N] ?o?n th?ng n: ?o?n th?ng [I', I] ?o?n th?ng p: ?o?n th?ng [B, N'] O = (0.48, 0.62) O = (0.48, 0.62) O = (0.48, 0.62) ?i?m A: ?i?m tr�n O_1 ?i?m A: ?i?m tr�n O_1 ?i?m A: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m I: Trung ?i?m c?a f ?i?m I: Trung ?i?m c?a f ?i?m I: Trung ?i?m c?a f ?i?m M: Giao ?i?m c?a h, g ?i?m M: Giao ?i?m c?a h, g ?i?m M: Giao ?i?m c?a h, g ?i?m M_1: Giao ?i?m c?a h, j ?i?m M_1: Giao ?i?m c?a h, j ?i?m N': Giao ?i?m c?a O_1, k ?i?m N': Giao ?i?m c?a O_1, k ?i?m N': Giao ?i?m c?a O_1, k ?i?m I': Trung ?i?m c?a l ?i?m I': Trung ?i?m c?a l ?i?m I': Trung ?i?m c?a l

Gọi N' = OB giao (O); I' là trung điểm AN'. Vậy I' cố định.

Xét tam giác AMN có: 

I'A = I'N'

AI = IN

nên I'I là đường trung bình hay I'I // N'N (1).

Lại có: do BN' là đường kính nên \(\widehat{N'NB}=90^o\), mà \(\widehat{IMN}=90^o\), vì thế IM // NN' (2).

Từ (1) và (2) suy ra I' , I , M  luôn thẳng hàng hay MI luôn đi qua điểm cố định I'.

b. Ta thấy I' cố định, B cũng cố định mà \(\widehat{I'MB}=90^o\) nên M thuộc đường tròn đường kinh I'B.

Đó là một đường tròn cố định, đây là hình vẽ minh họa chứng minh của cô:

???ng tr�n O_1: ???ng tr�n qua B_1 v?i t�m O ?o?n th?ng f: ?o?n th?ng [N, A] ?o?n th?ng g: ?o?n th?ng [N, B] ?o?n th?ng i: ?o?n th?ng [I, M] ?o?n th?ng l: ?o?n th?ng [A, N'] ?o?n th?ng m: ?o?n th?ng [N', N] ?o?n th?ng n: ?o?n th?ng [I', I] ?o?n th?ng p: ?o?n th?ng [B, N'] O = (0.48, 0.62) O = (0.48, 0.62) O = (0.48, 0.62) ?i?m A: ?i?m tr�n O_1 ?i?m A: ?i?m tr�n O_1 ?i?m A: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m I: Trung ?i?m c?a f ?i?m I: Trung ?i?m c?a f ?i?m I: Trung ?i?m c?a f ?i?m M: Giao ?i?m c?a h, g ?i?m M: Giao ?i?m c?a h, g ?i?m M: Giao ?i?m c?a h, g ?i?m M_1: Giao ?i?m c?a h, j ?i?m M_1: Giao ?i?m c?a h, j ?i?m N': Giao ?i?m c?a O_1, k ?i?m N': Giao ?i?m c?a O_1, k ?i?m N': Giao ?i?m c?a O_1, k ?i?m I': Trung ?i?m c?a l ?i?m I': Trung ?i?m c?a l ?i?m I': Trung ?i?m c?a l

25 tháng 8 2016

Theo bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\ge\frac{9}{a+b+c}-\frac{4}{a+b+c}\)\(=\frac{5}{a+b+c}\ne0\)\(\Rightarrowđpcm\)

k cho minh nha

29 tháng 8 2016

Bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) chỉ đúng với x, y, z dương.

22 tháng 8 2016

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

29 tháng 8 2016

20 < 25 => \(\sqrt{20}< \sqrt{25}\)= 5 => 20 + \(\sqrt{20}\)< 20 + 5 = 25 => \(\sqrt{20+\sqrt{20}}< \sqrt{25}\)= 5

Tiếp tục như vậy,ta có B < 5 (1)

24 < 27 => \(\sqrt[3]{24}< \sqrt[3]{27}\)= 3 => 24 +\(\sqrt[3]{24}\)< 24 + 3 = 27 => \(\sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{27}\)= 3

Tiếp tục như vậy,ta có C < 3 (2).Cộng (1) và (2),vế theo vế,ta có B + C < 5 + 3 = 8

Em mới học lớp 7 thôi,chưa biết chứng minh B + C > 7.

29 tháng 8 2016

19,36 < 20 < 25 => 4,4 <\(\sqrt{20}\)< 5 => 4,4 < \(\sqrt{20}< \sqrt{20+4,4}\) <\(\sqrt{20+\sqrt{20}}\) <\(\sqrt{20+5}=5\)

=> 4,4 <\(\sqrt{20+4,4}< \sqrt{20+\sqrt{20+\sqrt{20}}}\)\(\sqrt{20+5}\)= 5

Tiếp tục như vậy,ta có 4,4 < B < 5 (1)

17,576 < 24 < 27 => 2,6 <\(\sqrt[3]{24}\)< 3 => 2,6 <\(\sqrt[3]{24}< \sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{24+3}\)= 3

=> 2,6 <\(\sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24}}}< \sqrt[3]{24+3}\)= 3

Tiếp tục như vậy,ta có 2,6 < C < 3 (2).Cộng (1) và (2),vế theo vế,ta có 7 < B + C < 8 (đpcm)

P/S : Thay vì dùng 4,4 và 2,6 có thể dùng a và b thỏa mãn a2 < 20 ; b< 24 ; a + b = 7

        Thay vì dùng 5 và 3 có thể dùng m và n thoả mãn m2 > 20 ; n3 > 24 ; m + n = 8

22 tháng 8 2016

Toán Tuổi Thơ 2 chứ j,thế mà vẫn dc vào câu hỏi hay

21 tháng 8 2016
http://olm.vn/hoi-dap/question/678816.html
21 tháng 8 2016

trường hợp 1 tam giác ABC là tam giác đều nên =>AB=BC=AC

=> AC+AC=AB+BC

=>2AC=AB+BC

vậy 2AC=AB+BC trong trường hợp B= 60 độ

TH2:tam giác ABC là tam giác vuông tại B(góc B=90 độ)

=>AC<BC+AB(loại)

TH3: tam giác ABC có góc B lớn hơn 90 độ

=>AC >AB+BC(loại)

TH4: tam giác ABC có góc B nhỏ hơn 60 độ

A B C D E F

ta có:D;E lần lượt là trung điểm của BA và BC

và FA=AD=DB

FC=EC=EB

=>AC+AC=AD+DB+EC+EB=AB+BC

=>2AC=AB+BC

từ 4 trường hợp trên =>BC+AB=2AC khi và chỉ khi góc \(\widehat{B}\le60^o\)

21 tháng 8 2016

xin lỗi mk mới học lp 7 nên ko đc chắc chắn 

20 tháng 8 2016

- Ta có: \(b.c< b^2+c^2\), Suy ra:
\(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}>\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{a^2}{a^2+b^2+c^2}=1\).
Vậy: \(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}>1\).
- Giả sử \(a\le b\le c.\)Ta có:
\(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< \frac{a^2}{a^2+b^2}+\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\)
                                                          \(=\frac{a^2+b^2}{a^2+b^2}+\frac{c^2}{c^2+a^2}=1+\frac{c^2}{c^2+a^2}< 1+\frac{c^2}{c^2}=2\).
Vậy: \(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< 2.\)
Vậy ta chứng minh được:
\(1< \frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< 2.\)

20 tháng 8 2016

AD cho h ỏi olm của mình bị làm sao vạy ? gửi cau hỏi k đc. đc k k lên điểm ?