K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Tứ giác nội tiếp

a) Đường tròn $(O)$ tiếp xúc với \(AB.BC,CA\) tại $D,E,F$, tức là $O$ là giao của ba đường phân giác tam giác $ABC$ và \(OD\perp AB, OF\perp AC, OE\perp BC\)

Do đó: \(\widehat{ODA}+\widehat{OFA}=90^0+90^0=180^0\)

\(\Rightarrow ODAF\) là tứ giác nội tiếp.

Hoàn toàn tương tự: \(ODBE, OECF\) nội tiếp.

Từ các tứ giác nội tiếp suy ra:

\(\left\{\begin{matrix} \widehat{ODF}=\widehat{OAF}=\frac{\widehat{A}}{2}\\ \widehat{ODE}=\widehat{OBE}=\frac{\widehat{B}}{2}\end{matrix}\right.\) \(\Rightarrow \widehat{ODF}+\widehat{ODE}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)

hay \(\widehat{EDF}=\frac{\widehat{A}+\widehat{B}}{2}\)

Tương tự: \(\widehat{DEF}=\frac{\widehat{B}+\widehat{C}}{2}\) và \(\widehat{EFD}=\frac{\widehat{A}+\widehat{C}}{2}\)

Vì $ABC$ là tam giác nhọn nên các góc đều nhỏ hơn $90^0$

\(\Rightarrow \widehat{EDF}, \widehat{DEF}, \widehat{EFD}< 90^0\)

\(\Rightarrow \triangle DEF\) có 3 góc nhọn.

b)

Vì tam giác $ABC$ cân tại $A$ nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow \widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90^0-\frac{\widehat{A}}{2}\)

Tứ giác $ODAF$ nội tiếp \(\Rightarrow \widehat{ADF}=\widehat{AOF}=90^0-\widehat{OAF}=90^0-\frac{\widehat{A}}{2}\)

Do đó: \(\widehat{ABC}=\widehat{ADF}\), hai góc này ở vị trí đồng vị nên \(DF\parallel BC\)

c)

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{ACB}\\ \widehat{ABC}=\widehat{ADF}(\text{theo phần b})\end{matrix}\right.\) \(\Rightarrow \widehat{ADF}=\widehat{ACB}=\widehat{FCB}\)

\(\Rightarrow BDFC\) nội tiếp.

d)

$BD$ là tiếp tuyến của $(O)$ nên \(\widehat{BDM}=\widehat{DFI}=\widehat{DFB}\) (cùng chắn cung DI)

Mà do $BDFC$ nội tiếp nên \(\widehat{DFB}=\widehat{DCB}\)

Từ đây suy ra \(\widehat{BDM}=\widehat{DCB}\)

Xét tam giác $BDM$ và $BCD$ có:

\(\left\{\begin{matrix} \angle \text{B Chung}\\ \widehat{BDM}=\widehat{BCD}(cmt)\end{matrix}\right.\Rightarrow \triangle BDM\sim \triangle BCD(g.g)\)

\(\Rightarrow \frac{BD}{BC}=\frac{BM}{BD}(1)\)

Do \(DF\parallel BC\Rightarrow \frac{BD}{AB}=\frac{CF}{AC}\) (theo định lý Ta -let) mà \(AB=AC\Rightarrow BD=CF(2)\)

Từ \((1); (2)\Rightarrow \frac{BD}{BC}=\frac{BM}{CF}\) (đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Nguyễn Xuân Dương: làm sao như vậy được em. Đường tròn (O) tiếp xúc với ba cạnh tam giác thì đây là đặc điểm của đường tròn nội tiếp (tiếp xúc trong) hoặc bàng tiếp (tiếp xúc ngoài). Ở đây ta đang làm trong TH nó tiếp xúc trong.

28 tháng 1 2019

Hi anh trai, nhớ em là ai chứ :))

Áp dụng BĐT AM - GM: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

\(P=\Sigma\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\) \(=\Sigma\dfrac{1}{3x\left(y+z\right)+x+y+z}\)

\(\Rightarrow P\le\Sigma\dfrac{1}{3x\left(y+z\right)+3}\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{x\left(y+z\right)+1}\)

Chia cả hai vế cho \(xyz=1\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{\dfrac{1}{y}+\dfrac{1}{z}+1}\)

Đặt \(a=\sqrt[3]{\dfrac{1}{x^3}},b=\sqrt[3]{\dfrac{1}{y^3}},c=\sqrt[3]{\dfrac{1}{z^3}}\)

\(\Rightarrow a.b.c=1\)

\(\Rightarrow3P\le\Sigma\dfrac{1}{a^3+b^3+1}\)

Mặt khác: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

Nhân cả hai vế cho \(a+b\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc\)

\(\Leftrightarrow a^3+b^3+1\ge ab\left(a+b+c\right)\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{ab\left(a+b+c\right)}=1\)

\(\Leftrightarrow P\le\dfrac{1}{3}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=z=1\)

AH
Akai Haruma
Giáo viên
23 tháng 3 2018

Lời giải:

Ta có: \(\left\{\begin{matrix} x+\frac{1}{y}=3\\ y+\frac{1}{z}=3\\ z+\frac{1}{x}=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+\frac{1}{y}=y+\frac{1}{z}\\ y+\frac{1}{z}=z+\frac{1}{x}\\ z+\frac{1}{x}=x+\frac{1}{y}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x-y=\frac{y-z}{yz}\\ y-z=\frac{z-x}{xz}\\ z-x=\frac{x-y}{xy}\end{matrix}\right.(*)\) \(\Rightarrow (x-y)(y-z)(z-x)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)

\(\Leftrightarrow (x-y)(y-z)(z-x)\left(1-\frac{1}{x^2y^2z^2}\right)=0\)

Bây giờ ta xét các TH sau:

TH1: \(x-y=0\Rightarrow(*)\) kéo theo \(y-z=0\Rightarrow (*)\) kéo theo \(z-x=0\)

Do đó \(x=y=z\)

Thay vào pt ban đầu: \(x+\frac{1}{x}=3\Leftrightarrow x^2-3x+1=0\)

\(\Leftrightarrow x=\frac{3\pm \sqrt{5}}{2}\)

Ta có bộ nghiệm \((x,y,z)=\left(\frac{3+\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right);\left(\frac{3-\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right) \)

TH2: \(\left[\begin{matrix} y-z=0\\ z-x=0\end{matrix}\right.\) (hoàn toàn tương tự TH1)

TH3: \(1-\frac{1}{x^2y^2z^2}=0\Leftrightarrow xyz=\pm 1\)

\(\bullet\)Nếu \(xyz=1\):

\(\left\{\begin{matrix} x+\frac{1}{y}=3\\ y+\frac{1}{z}=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=3\\ y+xy=3\end{matrix}\right.\)

\(\Rightarrow x+\frac{1}{y}=y+xy\Leftrightarrow x(y-1)+\frac{y^2-1}{y}=0\)

\(\Leftrightarrow (y-1)(x+\frac{y+1}{y})=0\)

+) \(y=1\Rightarrow x=2; z=\frac{1}{2}\), thử vào pt số 3 thấy không thỏa mãn (loại)

\(+) x+\frac{y+1}{y}=0\Leftrightarrow x+1+\frac{1}{y}=0\Leftrightarrow 3+1=0\) (vô lý- loại )

\(\bullet xyz=-1\)

\(\left\{\begin{matrix} x+\frac{1}{y}=3\\ y-xy=3\\ \end{matrix}\right.\) \(\Rightarrow x+\frac{1}{y}=y-xy\Leftrightarrow (y+1)(x+\frac{1-y}{y})=0\)

+) Nếu \(y+1=0\Leftrightarrow y=-1\Rightarrow x=4; z=\frac{1}{4}\)

Thử lại vào pt thứ 3 thấy không đúng (loại )

+ Nếu \(x+\frac{1-y}{y}=0\Leftrightarrow x+\frac{1}{y}-1=0\Leftrightarrow 3-1=0\) (vô lý- loại )

Vậy \((x,y,z)=\left(\frac{3+\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right);\left(\frac{3-\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right) \)

24 tháng 3 2018

\(\left\{{}\begin{matrix}x+\dfrac{1}{y}=3\left(1\right)\\y+\dfrac{1}{z}=3\left(2\right)\\z+\dfrac{1}{x}=3\left(3\right)\end{matrix}\right.\) đk : x,y,z khác 0

từ (1) \(x=3-\dfrac{1}{y};x\ne0\Rightarrow y\ne\dfrac{1}{3}\) (4)

từ (3) và (4) => \(z=3-\dfrac{1}{x}=3-\dfrac{1}{3-\dfrac{1}{y}}=3-\dfrac{y}{3y-1}=\dfrac{8y-3}{3y-1};z\ne0\Rightarrow y\ne\dfrac{3}{8}\) (5)

từ (5) và (2) => \(y+\dfrac{3y-1}{8y-3}=3\Leftrightarrow8y^2-3y+3y-1=3\left(8y-3\right)\)

\(\Leftrightarrow y^2-3y+1=0\) \(\Delta_y=9-4=5\)

=>\(\left[{}\begin{matrix}y_1=\dfrac{3-\sqrt{5}}{2}\\y_2=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\) thỏa mãn đk y nhận

thế vào (4)=> \(\left[{}\begin{matrix}x_1=\dfrac{3-\sqrt{5}}{2}\\x_2=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\) thế vào (3) \(\Rightarrow\left[{}\begin{matrix}z_1=\dfrac{3-\sqrt{5}}{2}\\z_2=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\)

Đơn giản vậy thôi cần gì biết đổi hầm hố phân ra nhiều các trường hợp rắc rối

AH
Akai Haruma
Giáo viên
23 tháng 3 2018

Lời giải:

Áp dụng BĐT Cauchy ta có:

\(a^2+b^2\geq 2ab\)

\(b^2+1\geq 2b\)

Suy ra \(a^2+2b^2+3\geq 2(ab+b+1)\) \(\Rightarrow \frac{1}{a^2+2b^2+3}\leq \frac{1}{2(ab+b+1)}\)

Thực hiện toàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(\text{VT}\leq \frac{1}{2}\underbrace{\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)}_{M}(1)\)

Lại có: \(M=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{ac}{ab.ac+b.ac+ac}+\frac{a}{bc.a+c.a+a}+\frac{1}{ca+a+1}\)

\(=\frac{ac}{a+1+ac}+\frac{a}{1+ac+a}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1(2)\)

Từ \((1); (2)\Rightarrow \text{VT}\leq \frac{1}{2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

22 tháng 3 2018

44^2 =1936

45^2 =2025

phần thừa dư do 2018 không cp : 2018-[1936+(2025-1936-1 )/2] = 38 số

\(S=\dfrac{2}{1}+\dfrac{4}{2}+\dfrac{6}{3}+...+\dfrac{88}{44}+\dfrac{38}{45}=2.44+\dfrac{38}{45}\)

19 tháng 3 2018

Ôn tập chương Hình trụ, Hình Tròn, Hình cầu

a) Do MA, MB là các tiếp tuyến nên \(\widehat{MBO}=\widehat{MAO}=90^o\)

Xét tứ giác MBOA có \(\widehat{MBO}=\widehat{MAO}=90^o\) mà đỉnh A và đỉnh B đối nhau nên MBOA là tứ giác nội tiếp.

Vậy M, B, O, A cùng thuộc một đường tròn. (1)

Xét đường tròn (O) có I là trung điểm dây cung CD nên theo quan hệ đường kính dây cung ta có \(OI\perp CD\)

Suy ra \(\widehat{MIO}=90^o\)

Xét tứ giác MIOA có \(\widehat{MIO}=\widehat{MAO}=90^o\) mà đỉnh A và đỉnh I đối nhau nên MIOA là tứ giác nội tiếp.

Vậy M, I, O, A cùng thuộc một đường tròn. (2)

Từ (1) và (2) suy ra O, A, M, B, I cùng thuộc đường tròn đường kính MO.

b) Do M, B, I, A thuộc đường tròn đường kính MO nên \(\widehat{BIM}=\widehat{BAM}\) (Hai góc nội tiếp cùng chắn cung AM)

Xét đường tròn (O) ta lại có : \(\widehat{BAM}=\widehat{BEA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BA)

Suy ra \(\widehat{BIM}=\widehat{BEA}\)

Mà chúng lại ở vị trí đồng vị nên AE // CD.

c) Xét tam giác BCM và tam giác DBM có:

Góc M chung

\(\widehat{MBC}=\widehat{MDB}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)

\(\Rightarrow\Delta BCM\sim\Delta DBM\left(g-g\right)\Rightarrow\dfrac{BM}{DN}=\dfrac{CM}{BM}\Rightarrow BM^2=CM.DM\)

Xét tam giác vuông MBC, đường cao BH, theo hệ thức lượng ta có:

\(BM^2=MH.MO\)

Từ đó ta có \(CM.DM=MH.MO\Rightarrow\dfrac{MH}{MD}=\dfrac{MC}{MO}\)

Vậy thì \(\Rightarrow\Delta HCM\sim\Delta DOM\left(c-g-c\right)\Rightarrow\widehat{CHM}=\widehat{ODC}\)

Xét tứ giác CHOD có \(\widehat{CHM}=\widehat{ODC}\)\(\widehat{CHM}\) là góc ngoài tại đỉnh H, đối diện đỉnh D nên CHOD là tứ giác nội tiếp.

Do đó \(\widehat{DHO}=\widehat{DCO}\)

Xét tam giác vuông CIO có : \(CI=\dfrac{\sqrt{3}R}{2};CO=R\Rightarrow\cos\widehat{ICO}=\dfrac{CI}{CO}=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow\widehat{DCO}=30^o\)

Vậy thì \(\widehat{DHO}=30^o\)

9 tháng 3 2020

Bạn ơi ở câu c góc MBC= góc MBD í thì bạn giải thích đc k

AH
Akai Haruma
Giáo viên
18 tháng 3 2018

Lời giải:

Để pt có hai nghiệm phân biệt thì \(\Delta'=(m-1)^2-(m^2-3)>0\)

\(\Leftrightarrow 4-2m>0\Leftrightarrow m< 2\)

Khi đó áp dụng định lý Viete về pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-3\end{matrix}\right.(*)\)

a) \(x_1-x_2=2\Rightarrow (x_1-x_2)^2=4\)

\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow x_1^2+x_2^2+2x_1x_2-4x_1x_2=4\)

\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4\)

\(\Leftrightarrow 4(m-1)^2-4(m^2-3)=4\)

\(\Leftrightarrow 8m=12\Leftrightarrow m=\frac{3}{2}\) (thỏa mãn)

b) \(x_1x_2-x_1-x_2=11\)

\(\Leftrightarrow x_1x_2-(x_1+x_2)=11\)

\(\Leftrightarrow m^2-3-2(m-1)=11\)

\(\Leftrightarrow m^2-2m-12=0\Leftrightarrow \left[\begin{matrix} m=1+\sqrt{13}\\ m=1-\sqrt{13}\end{matrix}\right.\)

Vì \(m<2\Rightarrow m=1-\sqrt{13}\)

c)Ta có: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x_1+x_2+2=2m\\ x_1x_2+3=m^2\end{matrix}\right.\)

Suy ra \( (x_1+x_2+2)^2=4(x_1x_2+3)(=4m^2)\)

\(\Leftrightarrow x_1^2+x_2^2+4+2x_1x_2+4(x_1+x_2)=4x_1x_2+12\)

\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2+4(x_1+x_2)-8=0\)

Đây chính là biểu thức (không phụ thuộc m) cần tìm.

21 tháng 3 2018

Cảm ơn cô (thầy) ạ!

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)

\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)

\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)

Thực hiện tương tự với những biểu thức còn lại suy ra:

\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)

\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)

\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)

\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))

Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)

Dấu bằng xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
15 tháng 3 2018

Lời giải:

Phản chứng. Giả sử với điều kiện đã cho thì cả hai PT vô nghiệm. Tức là:

\(\left\{\begin{matrix} \Delta_1=b^2-4c<0\\ \Delta_2=c^2-4b< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} b^2< 4c\\ c^2< 4b\end{matrix}\right.\) (1)

Vì \(b^2,c^2>0\) nên từ \((1);(2)\Rightarrow b,c>0\)

Không mất tính tổng quát giả sử \(b>c\Rightarrow \frac{1}{b}< \frac{1}{c}\)

\(\Rightarrow \left\{\begin{matrix} \frac{2}{b}< \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\\ \frac{2}{c}> \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b>4\\ c<4\end{matrix}\right.(2)\)

Khi đó từ (1) và \((*)\) suy ra \(b^2< 4c< 4.4\Rightarrow b< 4\) (mâu thuẫn với \((*)\) )

Do đó điều giả sử sai. Tức là luôn tồn tại ít nhất một trong hai giá trị \(\Delta\) không âm, tức là ít nhất một trong hai phương trình có nghiệm (đpcm)

19 tháng 3 2018

từ hệ thức: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}b;c\ne0\\2\left(b+c\right)=bc\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\Delta_1=b^2-4c\\\Delta_2=c^2-4b\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

\(\Delta=\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)(3)

Delta >0 => delta1 hoặc delta 2 >=0 => dpcm

14 tháng 3 2018

Đề bài cho dư. Chỉ cần vế dưới là đủ rồi.

Điều kiện: \(x,y\ge1\)

Ta có:

\(\sqrt{x\left(xy-x\right)}+\sqrt{y\left(xy-y\right)}\le\dfrac{x+xy-x}{2}+\dfrac{y+xy-y}{2}=xy\)

Dấu = xảy ra khi \(x=y=2\)

14 tháng 3 2018

dưới chỉ là đk chưa đủ ; phải thử lên pt xem (x;y) =(2;2) có đúng không nữa

có lẽ ý đồ của người ra đề bẫy