K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2015

gọi số cần tìm là ab (a khác 0; a; b là các chữ số)

tổng 2 chữ số của số đó nhỏ hơn số đó 6 lần => a + b < 6. ab => a+b < 6(10a+b) => 59a +5b > 0 (*)

thêm 25 vào tích của 2 chữ số sẽ được số viết theo thứ tự ngược lại với số đã cho

=> a.b + 25 = ba

=> a.b + 25 = 10b + a

=> a.b - a + 25 -10b = 0

=> a.(b - 1) - 10(b -1) = -15

=> (a-10)(b-1) = -15 => a -10 ; b-1 thuộc Ư(15) = {15; 1; -15; -1; 5; 3;-5;-3; }

Do a là chữ số nên a- 10 < 0 => a- 10 chỉ có thể nhận các giá trị -15; -5;-1;-3

Nếu  a- 10 = -15 => a=-5 => b-1 = 1 => b= 2  đối chiếu với (*) => loại

a - 10 = -1 => a=9 => b-1 = 15 => b=16 loại

a-10 = -5 => a=5 => b-1= 3 => b = 4 thoả mãn (*) => số 54 thoả mãn

a-10 = -3 => a=7 => b-1= 5 => b = 6 thoả mãn (*) => số 76 thoả mãn 

Vậy có 2 số thoả mãn đề bài là 54; 76

 

22 tháng 4 2020

Éucdhx

4 tháng 3 2015

nâng cao và phat trien toán 8 tap 1....

 

4 tháng 3 2015

troi!minh ko co sach nay

2 tháng 3 2015

...=x^4+x^3+x^2+5x^2+5x+5=x^(x^2+x+1)+5(x^2+x+1)=(x^2+5)(x^2+x+1)>0 (pt vô nghiệm)

23 tháng 2 2019

\(\Leftrightarrow x^4+x^3+x^2+5x^2+5x+5=0\)

\(\Leftrightarrow x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+5\right)=0\)

\(\Leftrightarrow x^2+x+1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{3}{4}\left(l\right)\)

hay \(x^2+5=0\Leftrightarrow x^2=-5\left(l\right)\)

\(v...S=\varnothing\)

20 tháng 2 2016

a)Xét tg DBM có ^DMC là góc ngoài tại đỉnh M 
do ^DBM=^DMC(=60độ) 
=>^DMC = ^DBM+^BDM=^DME+^BDM 
=>^BDM=^DMC-^DME=^EMC 
Xét tg BDM và tg CME có 
- ^DBM=^ECM(=60độ) 
- ^BDM=^EMC 
=>tg BDM đồng dạng tg CME 
=>BD/CM=BM/CE 
=>BD.CE=BM.CM=BC/2.BC/2=BC^2/4 
b) tg BDM đồng dạng tg CME 
=>BD/CM=DM/ME 
=>BD/DM=CM/ME 
Mà MB=CM 
=> BD/DM=BM/ME 
Xét tg BDM và tg MDE có 
- BD/DM=BM/ME 
-^DBM=^DME 
=>tg BDM đồng dạng tg MDE 
=>^BDM=^MDE 
=>DM là tpg BDE 
c) TỪ M kẻ đường thẳng vuông g óc với AB,AC và DE lần lượt tại N,Q,P 
Xét tg NDM vuông tại N v à tg DPM vuông tại P có 
-Chung DM 
-^NDM=^PDM(vì DM l à tpg BDE) 
=> tg NDM= tg DPM(cạnh huyền-góc nhọn) 
=>DN=DP 
tương tự chứng minh : PE=EQ 
Chu vi tg ADE c ó AD+DE+AE=AD+AE+DP+PE=AD+DP+DN+EQ=AN+AQ 
do M cố định , AB và AC ko đổi 
=>N,Q cố định 
=>AN,AQ ko đổi 
=> Chu vi tam giác ADE không đổi.

24 tháng 1 2017

hình đâu

12 tháng 9 2018

Bạn tham khảo lời giải ở đường link sau nhé:

Câu hỏi của Thới Nguyễn Phiên - Toán lớp 8 - Học toán với OnlineMath

16 tháng 8 2015

ta có:

4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))

4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)

4s=k(k+1)(k+2)(k+3)

ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương

=>4s+1 là 1 số chính phương

22 tháng 2 2020

ta co:1/1*2*3=(1/1*2-1/2*3):2
1/2*3*4=(1/1*2-1/2*3):2
...
cu nhu the cho den:
1/98*99*100=(1/98*99-1/99*100):2
suy ra : 1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100
=(1/1*2-1/2*3):2+(1/2*3-1/3*4):2+...+(1/98*99-1/99*100):2
=(1/1*2-1/2*3+1/2*3-1/3*4+...+1/98*99-1/99*100):2
=(1/1*2-1/99*100):2
=(1/2-1/9900)
=(4950/9000-1/9000):2
=4949/9000:2
=4949/18000
học tốt

18 tháng 12 2018

Hay :)) 

A B C C1 B1 A1 D E F H1 G1 G2 H3

\(\Delta ABC\) có \(C_1\) là trung điểm của \(AB\) và \(B_1\) là trung điểm của \(AC\) nên \(B_1C_1\) là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)\(B_1C_1=\frac{1}{2}BC=A_1B=A_1C\)

Và \(B_1C_1//BC\)\(\Rightarrow\)\(\widehat{AC_1B_1}=\widehat{C_1BA_1}\) ( hai góc đồng vị ) 

Xét \(\Delta AB_1C_1\) và \(\Delta A_1BC_1\) có : 

\(AC_1=BC_1\) \(\left(GT\right)\)

\(\widehat{AC_1B_1}=\widehat{C_1BA_1}\) ( chứng minh trên ) 

\(B_1C_1=A_1B\) ( chứng minh trên ) 

Do đó : \(\Delta AB_1C_1=\Delta A_1BC_1\) \(\left(c-g-c\right)\)

Chứng minh tương tự với các \(\Delta AB_1C_1\) và \(\Delta A_1B_1C\)\(;\)\(\Delta A_1BC_1\) và \(\Delta A_1B_1C\)\(;\)\(\Delta A_1BC_1\) và \(\Delta A_1B_1C_1\) ta có : 

\(\Delta AB_1C_1=\Delta A_1BC_1=\Delta A_1B_1C=\Delta A_1B_1C_1\)

Mà \(S_{AB_1C_1}+S_{A_1BC_1}+S_{A_1B_1C}+S_{A_1B_1C_1}=S_{ABC}\)

\(\Rightarrow\)\(S_{AB_1C_1}+S_{A_1B_1C_1}=\frac{1}{2}S_{ABC}\)

Bài toán trở thành Chứng minh \(S_{A_1EC_1DB_1F}=S_{AB_1C_1}+S_{A_1B_1C_1}\)

Do 4 tam giác bằng nhau nên các tam giác tạo từ các đường cao của chúng tương ứng bằng nhau 

\(\Rightarrow\)\(\Delta C_1EA_1=\Delta ADB_1\)\(;\)\(\Delta B_1FA_1=\Delta ADC_1\)

Mà \(S_{A_1EC_1DB_1F}=S_{C_1EA_1}+S_{B_1FA_1}+S_{C_1DB_1}+S_{A_1B_1C_1}\)

\(\Leftrightarrow\)\(S_{A_1EC_1DB_1F}=\left(S_{ADB_1}+S_{ADC_1}+S_{C_1DB_1}\right)+S_{A_1B_1C_1}=S_{AB_1C_1}+S_{A_1B_1C_1}\) ( điều phải chứng minh ) 

... 

18 tháng 12 2018

A B C A B C 1 1 1 D E F H

Gọi H là trực tâm của \(\Delta\)A1B1C1.

Ta thấy: \(\Delta\)ABC có A1, B1, C1 là trung điểm các cạnh BC, CA, AB

Cho nên: \(S_{A_1B_1C_1}=S_{AB_1C_1}=S_{BA_1C_1}=S_{CA_1B_1}=\frac{S_{ABC}}{4}\). Ta đi chứng minh \(S_{A_1EC_1DB_1F}=2S_{A_1B_1C_1}\)

Xét \(\Delta\)A1B1C1: H là trực tâm => A1H vuông góc B1C1. Mà B1C1 // BC => A1H vuông góc BC

Nhưng: C1E cũng vuông góc BC nên A1H // C1E. Tương tự: C1H // A1

Do đó: Tứ giác A1HC1E là hình bình hành => \(S_{A_1HC_1}=S_{A_1EC_1}=\frac{S_{A_1HC_1E}}{2}\)

Tương tự, ta có: \(S_{A_1HB_1}=S_{A_1FB_1}=\frac{S_{A_1HB_1F}}{2};S_{B_1HC_1}=S_{B_1DC_1}=\frac{S_{B_1HC_1D}}{2}\)

\(\Rightarrow S_{A_1HC_1}+S_{A_1HB_1}+S_{B_1HC_1}=\frac{S_{A_1EC_1DB_1F}}{2}\Rightarrow S_{A_1EC_1DB_1F}=2.S_{A_1B_1C_1}=2.\frac{S_{ABC}}{4}=\frac{S_{ABC}}{2}\) (đpcm).

(P/S: Các bn có thể tham khảo thêm cách này)

15 tháng 1 2015

giả sử 5 nghiệm là x1,x2...x5

có:x^5-x^4-x^3-x^2-x-2=(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)

                                =x^5-(x1+x2+x3+x4+x5)x^4-(.....

đồng nhất hệ số

x1+x2+x3+x4+x5=1

(x1+x2+x3+x4+x5)/5=1/5

2 tháng 4 2016

+) Nếu x<0 ta có

x^6>0, x^5<0, x^4>0, x^3<0,x^2>0, x<0=>x^6-x^5+x^4-x^3+x^2-x > 0=>x^6-x^5+x^4-x^3+x^2-x+3/4>0(trái với đề bài)

+)Nếu x > hoặc =0 thì x^6>x^5, x^4>x^3, x^2>x, 3/4>0 =>x^6-x^5+x^4-x^3+x^2-x+3/4>0(trái với đề bài)

Vậy phương trình trên vô nghiệm