Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Ôn tập và kiểm tra cuối chương V SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong không gian Oxyz, đường thẳng d:⎩⎨⎧x=−1+ty=2−3tz=t với t∈R và điểm A(2;3;1). Mặt phẳng (P) đi qua điểm A vuông góc với đường thẳng d có phương trình là
Trong không gian Oxyz, mặt phẳng (α):2x+3y+−1z=1 có một vectơ pháp tuyến là
Trong không gian Oxyz, cho d vuông góc với 2 đường thẳng d1:⎩⎨⎧x=2−3ty=3+tz=−1+2t và d2:2x+1=5y=3z+3. Vectơ chỉ phương của đường thẳng d là
Trong không gian Oxyz, mặt cầu (S) có tâm I(1;−3;0) và bán kính bằng 2. Phương trình của (S) là
Trong hệ toạ độ Oxyz, mặt cầu (S):x2+y2+(z−3)2=1 có tâm là điểm nào dưới đây?
Trong không gian hệ tọa độ Oxyz, cho ba điểm A(1;−1;−1), B(1;0;4), C(0;−2;−1). Phương trình mặt phẳng (α) qua A và vuông góc với đường thẳng BC là
Trong không gian Oxyz, hai mặt phẳng (P): x+2y−2z+3=0 và (Q): −x−2y+2z−12=0 lần lượt chứa hai mặt bên của một hình lập phương. Thể tích khối lập phương đó là
Trong không gian Oxyz, cho đường thẳng d:1x−1=2y−1=4z+2 và đường thẳng d′:1x−2=2y−3=m2z−m. Số giá trị của tham số m để hai đường thẳng d,d′ song song với nhau là
Tìm tâm và bán kính mặt cầu có phương trình sau:
x2+y2+z2+4x−6z+12=0
Trong không gian Oxyz, mặt cầu (S):(x+1)2+(y−2)2+z2=9 có bán kính bằng
Trong không gian Oxyz, mặt phẳng (P) đi qua hai điểm M(2;0;−1), N(1;−1;3) và vuông góc với mặt phẳng (Q):3x+2y−z+5=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) MN=(−1;−1;4). |
|
b) Một vectơ pháp tuyến của mặt phẳng (Q) là nQ=(3;2−1). |
|
c) Vectơ pháp tuyến của mặt phẳng (Q) cũng là vectơ pháp tuyến của mặt phẳng (P). |
|
d) Phương trình mặt phẳng (P):7x−11y−9z+15=0. |
|
Trong hệ trục tọa độ cho các điểm M(0;2;0),N(0;0;−1),P(−1;0;3).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trọng tâm tam giác MNP là điểm G(0;2;1). |
|
b) Điểm M thuộc mặt phẳng (α):2x+y−2z=0. |
|
c) Diện tích tam giác OMN=1. |
|
d) Tồn tại 2 mặt phẳng (α) qua hai điểm M, N và có khoảng cách từ P đến (α) bằng 2. |
|
Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục là kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(−1;2;5). Biết trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 4 km.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình mặt cầu thể hiện phạm vi phủ sóng tối đa của trạm thu phát sóng là x2+y2+z2+2x−4y−10z−14=0. |
|
b) Điểm A(−1;2;8) nằm ngoài vùng phủ sóng của trạm thu phát sóng điện thoại di động. |
|
c) Một người đứng ở vị trí có tọa độ điểm B(2;0;−5) sẽ không thu được sóng điện thoại ở trạm phát sóng này. |
|
d) Nếu hai người cùng bắt được sóng của trạm thu phát sóng điện thoại đó thì khoảng cách tối đa giữa hai người đó là 8 km. |
|
Trong không gian với hệ trục tọa độ Oxyz. Phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1),B(0;2;2) đồng thời cắt các tia Ox,Oy lần lượt tại các điểm M,N (M,N không trùng với gốc tọa độ O) thỏa mãn OM=2ON là ax+by+cz+d=0. Tính T=a+b+c+d.
Trả lời:
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ:3x−1=−2y+2=1z−3 và mặt phẳng (P):x+y−z−1=0. Mặt phẳng (Q) đối xứng với (P) qua Δ có phương trình là ax+by+cz+d=0, trong đó a, b, c, d nguyên dương; a và b nguyên tố cùng nhau. Tính a+b+c+d.
Trả lời:
Trong không gian Oxyz, cho đường thẳng Δ:⎩⎨⎧x=1+2ty=2+tz=−2−t và (P):−x+2y+2z+5=0. Gọi d là đường thẳng đi qua điểm A(−1;0;−1) cắt đường thẳng Δ và tạo với mặt phẳng (P) một góc nhỏ nhất. Vectơ chỉ phương ud=(a;b;1). Giá trị của a+2b bằng bao nhiêu?
Trả lời:
Để xác định một vị trí của một vật thể trong không gian, người ta sử dụng hệ thống GPS và các vệ tinh. Trên các vệ tinh có gắn các máy thu phát tín hiệu để xác định khoảng cách giữa máy phát tín hiệu đó và vật thể. Trong không gian với hệ tọa độ Oxyz, cho bốn vệ tinh tại vị trí các điểm A(2;−1;0); B(1;2;5); C(−5;8;4); D(−2;−5;12). Khoảng cách giữa các điểm M(x;y;z) và các vệ tinh ở vị trí các điểm A;B;C;D lần lượt là MA=35; MB=2; MC=101; MD=123. Tính tổng x+y+z.
Trả lời: .
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x2+y2+z2=1 và mặt phẳng (P):x+y+z−1=0. Gọi (S′) là mặt cầu chứa đường tròn giao tuyến của (S)và (P) đồng thời tiếp xúc với mặt phẳng (Q):x+1=0. Gọi I(a;b;c) là tâm của mặt cầu (S′), tính giá trị T=a+b+c.