Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Kiểm tra cuối chương II SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A,B với OA=(2;−1;3),OB=(5;2;−1). Tọa độ của vectơ AB là
Trong không gian Oxyz với i,j,k lần lượt là vectơ đơn vị của các trục Ox,Oy,Oz, cho a=2i+k−3j. Tọa độ của a là
Trong không gian Oxyz, cho vectơ a=2i+j−2k. Độ dài của vectơ a bằng
Trong không gian Oxyz, cho hai vectơ u=(1;1;0) và v=(2;0;−1). Độ dài ∣u+2v∣ bằng
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;−3) và B(−3;4;5). Tọa độ trung điểm I của đoạn thẳng AB là
Trong không gian Oxyz, cho hai điểm A(2;3;−1) và B(−4;1;9). Trung điểm I của đoạn thẳng AB có tọa độ là
Trong không gian Oxyz, cho hai vectơ u=(1;3;−2) và v=(2;1;−1). Tọa độ của vectơ u−v là
Trong không gian Oxyz, cho vectơ a=(2;−1;5). Tọa độ vectơ −5a là
Gọi I là trung điểm của AB và điểm M bất kì khác I, A, B. Khẳng định nào sau đây sai?
Cho hình hộp ABCD.EFGH. Khi đó AB−EH là
Trong không gian Oxyz, cho u=(1;−1;4) và v=(3;−2;1). Khi đó u.v bằng
Cho hai vectơ u,v có ∣u∣=3,∣v∣=4 và góc giữa hai vectơ u,v bằng 60∘. Tích vô hướng u.v bằng
Trong không gian với hệ tọa độ Oxyz, cho A(1;1;2),B(2;−1;1) và C(3;2;−3). Để ABCD là hình bình hành thì tọa độ điểm D là
Trong không gian Oxyz, cho tọa độ điểm A(3;−2;1). Gọi H là hình chiếu của điểm A trên trục Ox. Độ dài đoạn thẳng AH bằng
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Cho hình lăng trụ ABC.A′B′C′,M là trung điểm của BB′. Đặt CA=a,CB=b,AA′=c. Khẳng định nào sau đây đúng?
Trong không gian Oxyz, cho hình bình hành ABCD có A(2;−1;−2),B(3;1;2),C(1;−1;1) và D(xD;yD;zD).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) AB=(1;2;4). |
|
b) DC=(1−xD;−1−yD;1−zD). |
|
c) DC=AB. |
|
d) xD+yD+zD=2. |
|
Cho hình hộp ABCD.A′B′C′D′; Các điểm M,N lần lượt thuộc các đường thẳng CA và DC′ sao cho MC=mMA;ND=mNC′. Đặt BA=a;BB′=b;BC=c.
a) BD′=a+b−c. |
|
b) BM=1−mc−ma. |
|
c) BN=1−m1a−1−mmb+c. |
|
d) m=21 thì MN // BD′. |
|
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có tất cả các cạnh bằng 1. Gọi N là trung điểm của BC.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) AA′.AN=0. |
|
b) AB.AC=21. |
|
c) AN.A′B=23 |
|
d) (AN,A′B)=60∘ |
|
Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng của ba lực F1,F2,F3, có độ lớn lần lượt là 24 N, 12 N, 6 N. Biết góc tạo bởi hai lực F1,F2 là 120∘ và lực thứ ba vuông góc với hai lực đầu tiên.
Trong đó điểm D là đỉnh của hình bình hành OBDA và E là đỉnh của hình bình hành OCED.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) BO+BA=BD. |
|
b) OE=OA+OB+OC. |
|
c) Độ dài vectơ OD là 127. |
|
d) Độ lớn hợp lực tác dụng vào vật O là 613 N. |
|
Cho hình hộp chữ nhật ABCD.A′B′C′D′. Trên đoạn thẳng AC và DC′ lần lượt lấy các điểm M và N sao cho MN // BD′. Biết BD′=6, tính độ dài đoạn thẳng MN.
Trả lời:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với SA=4,AB=1,AD=2 và SA⊥(ABCD). Gọi M là trung điểm của AB. Tính góc giữa hai vectơ SC và DM. (làm tròn đến đơn vị độ)
Trả lời: ∘
Một chiếc đèn chùm treo có khối lượng m=7 kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích SA,SB,SC,SD sao cho S.ABCD là hình chóp tứ giác đều có ASC=50∘. Tính độ lớn của lực căng cho mỗi sợi xích khi đèn đứng yên. (Làm tròn kết quả đến chữ số thập phân thứ nhất, đơn vị N)
Trả lời:
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời: