Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có đạo hàm f′(x)=x2+16. Khi đó, hàm số y=f(x) luôn
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ.
Điểm cực tiểu của đồ thị hàm số là
Cho hàm số y=f(x) có đồ thị là đường cong như hình vẽ:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Giá trị lớn nhất của hàm số y=2x+x8 trên đoạn [1;3] là
Hàm số nào sau đây có đồ thị như hình vẽ?
Đường cong trong hình vẽ là dạng đồ thị của hàm số nào dưới đây?
Đồ thị hàm số nào sau đây cắt trục tung tại điểm có tung độ âm?
Phương trình tiếp tuyến của đồ thị hàm số y=x3−3x2+1 tại điểm A(3;1) là
Dân số P (nghìn người) của một khu nghỉ dưỡng được cho bởi hàm số P(t)=2t2+7400t,t≥0, với t là thời gian tính theo tháng. Tiệm cận ngang đồ thị hàm số y=P(t) là
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Để đồ thị hàm số y=x+a−x2+x+a có tiệm đứng và tiệm cận xiên, trong đó tiệm cận xiên đi qua điểm A(2;0) thì giá trị của tham số a là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Hàm số đã cho nghịch biến trên R. |
|
b) Phương trình y=0 có 2 nghiệm phân biệt. |
|
c) Hàm số đã cho liên tục tại x=−2. |
|
d) Đồ thị hàm số đã cho có 2 tiệm cận đứng. |
|
Chi phí nhiên liệu của một chiếc tàu chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng mỗi giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v=10 km/h thì phần thứ hai bằng 30 nghìn đồng mỗi giờ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi vận tốc v=10 (km/h) thì chi phí nguyên liệu cho phần thứ nhất trên mỗi km đường sông là 48000 đồng. |
|
b) Hàm số xác định tổng chi phí nguyên liệu trên mỗi km đường sông với vận tốc x km/h là f(x)=x480+0,03x3. |
|
c) Khi vận tốc v=30 km/h thì tổng chi phí nguyên liệu trên mỗi km đường sông là 43000 đồng. |
|
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên mỗi km đường sông nhỏ nhất là v=20 km/h. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời:
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 300 km, vận tốc dòng nước là 6 km/h. Nếu vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v)=cv3t, trong đó c là hằng số và E tính bằng Jun. Tính vận tốc bơi của cá (km/h) khi nước đứng yên để năng lượng tiêu hao ít nhất.
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Một cửa hàng kinh doanh rau tươi ước tính doanh thu bởi hàm số f(x)=x2−29000x+1000100000 (đồng) và tiền lãi thu được là g(x)=1000x+100000 (đồng) với x (đồng) là giá bán cho mỗi kg rau tươi. Biết doanh thu bằng tổng tiền lãi và tiền vốn. Tìm giá bán mỗi kg rau tươi (đơn vị nghìn đồng) sao cho cửa hàng phải bỏ vốn ra ít nhất.
Trả lời:
Cho hàm số y=f(x) có đồ thị như hình vẽ. Tìm số nghiệm thực của phương trình f2(x)−f(x)=0.
Trả lời:
Cho hàm số y=f′(x) có đồ thị như hình vẽ.
Biết rằng hàm số y=f(2−x) đồng biến trên khoảng (a;+∞). Giá trị nguyên nhỏ nhất của a là bao nhiêu?
Trả lời: