Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Đơn giản biểu thức A=cos(α−2π)+sin(α−π), ta được
Giá trị lớn nhất của hàm số y=3sinx là
Chu kì của hàm số y=2sinxcosx là
Họ nghiệm của phương trình tan(x−4π)−1=0 là
Dãy số nào sau đây là cấp số cộng?
Cho dãy số có các số hạng đầu là: 5;10;15;20;25;.... Số hạng tổng quát của dãy số này là
Cho cấp số cộng (un) có số hạng đầu bằng 2, công sai bằng −3. Tổng 99 số hạng đầu của cấp số cộng đã cho bằng
Cho cấp số nhân (un) có số hạng đầu u1=−3 và công bội q=32. Số hạng thứ năm của (un) là
Nếu tan2β=4tan2α thì tan2β−α bằng
Mệnh đề nào sau đây sai?
Nghiệm của phương trình tanx=−1 là
Đường cong trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau đây?
Cho hàm số f(x)=∣tanx∣+x3−3x.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số: D=R\{2π+kπk∈Z}. |
|
b) f(−π)=−f(π). |
|
c) Hàm số đã cho đối xứng qua gốc tọa độ O(0;0). |
|
d) Hàm số đã cho là hàm số vừa chẵn vừa lẻ. |
|
Cho phương trình lượng giác 2sinx=2.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình tương đương sinx=sin4π. |
|
b) Phương trình có nghiệm là: x=3π+k2π;x=43π+k2π,(k∈Z). |
|
c) Phương trình có nghiệm dương nhỏ nhất bằng 4π. |
|
d) Số nghiệm của phương trình trong khoảng (−2π;2π) là hai nghiệm. |
|
Cho cấp số nhân (un) thoả mãn: ⎩⎨⎧u4=272u3=243u8.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số hạng u1=2;u2=32. |
|
b) u5−u3=−8116. |
|
c) Số 65612 là số hạng thứ 8 của cấp số nhân. |
|
d) Tổng 9 số hạng đầu của cấp số nhân là số lớn hơn 3. |
|
Cho hai đồ thị hàm số y=sin(x+4π) và y=sinx.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình hoành độ giao điểm của hai đồ thị hàm số: sin(x+4π)=sinx. |
|
b) Hoành độ giao điểm của hai đồ thị là x=83π+kπ,(k∈Z). |
|
c) Khi x∈[0;2π] thì hai đồ thị hàm số cắt nhau tại ba điểm. |
|
d) Khi x∈[0;2π] thì toạ độ giao điểm của hai đồ thị hàm số là: (85π;sin85π); (87π;sin87π). |
|
Vào đầu mỗi tháng, ông An đều gửi vào ngân hàng số tiền cố định 30 triệu đồng theo hình thức lãi kép với lãi suất 0,6% /tháng. Tính số tiền (đơn vị triệu đồng) ông An có được sau tháng sau tháng thứ hai. (làm tròn kết quả tới hàng phần mười)
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời:
Hùng đang tiết kiệm để mua một cây đàn piano có giá 142 triệu đồng. Trong tháng đầu tiên, anh ta để dành được 20 triệu đồng. Mỗi tháng tiếp theo anh ta để dành được 3 triệu đồng và đưa vào số tiền tiết kiệm của mình. Hỏi ít nhất vào tháng thứ bao nhiêu thì Hùng mới có đủ tiền để mua cây đàn piano đó?
Trả lời:
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời:
Cho các góc α,β thỏa mãn 2π<α,β<π,sinα=31,cosβ=−32. Tính sin(α+β). (Làm tròn kết quả tới chữ số hàng phần trăm)
Trả lời: .
Cho dãy số (un) biết un=n+2an+5. Có bao nhiêu giá trị nguyên của a nhỏ hơn 100 để dãy số (un) là dãy số tăng.
Trả lời: