Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số y=f(x) có đạo hàm là f′(x)=x2(x+1)2(2x−1). Số điểm cực trị của hàm số đã cho là
Hình trên là bảng biến thiên của hàm số nào trong bốn hàm số dưới đây?
Trong không gian Oxyz, cho hai điểm A(2;3;4) và B(3;0;1). Độ dài của vectơ AB bằng
Thời gian truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau:
Thời gian (phút) | Số học sinh |
[9,5;12,5) | 3 |
[12,5;15,5) | 12 |
[15,5;18,5) | 15 |
[18,5;21,5) | 24 |
[21,5;24,5) | 2 |
Khoảng biến thiên của mẫu số liệu trên là
Cho hàm số y=x3+3x+m, với m là tham số thực. Giá trị của m để giá trị lớn nhất của hàm số đã cho trên [0;1] bằng 4 là
Giá trị nhỏ nhất của hàm số y=31x3+2x2−5x+1 trên đoạn [0;2018] là
Một tác giả muốn xuất bản một cuốn sách Toán học. Biết phí xuất bản là 7 triệu đồng và giá tiền in mỗi cuốn sách là 50 nghìn đồng. Gọi t≥1 là số cuốn sách sẽ in và f(t) (nghìn đồng) là chi phí trung bình của mỗi cuốn sách. Phương trình đường tiệm cận ngang của đồ thị hàm số y=f(t) là
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Hằng ngày ông Thắng đều đi xe buýt từ nhà đến cơ quan. Dưới đây là bảng thống kê thời gian của 100 lần ông Thắng đi xe buýt từ nhà đến cơ quan.
Thời gian (phút) |
Số lần |
[15;18) | 22 |
[18;21) | 38 |
[21;24) | 27 |
[24;27) | 8 |
[27;30) | 4 |
[30;33) | 1 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần trăm) bằng
Kết quả đo chiều cao của 100 cây keo ba năm tuổi tại một nông trường được cho ở bảng sau:
Chiều cao (m) | Số cây |
[8,4;8,6) | 5 |
[8,6;8,8) | 12 |
[8,8;9,0) | 25 |
[9,0;9,2) | 44 |
[9,2;9,4) | 14 |
Phương sai của mẫu số liệu ghép nhóm đã cho (làm tròn đến chữ số hàng phần nghìn) bằng
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Cho hàm số y=x2−2x+mx2+x−2 có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi m=0, đồ thị hàm số có tiệm cận ngang y=1. |
|
b) Khi m=0, đồ thị hàm số có 3 tiệm cận. |
|
c) Có hai giá trị của m để đồ thị hàm số có đúng một tiệm cận đứng. |
|
d) Gọi S là tập hợp các giá trị nguyên của m∈[−8;8] để đồ thị hàm số có ba đường tiệm cận. Số phần tử của S là 7. |
|
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có tất cả các cạnh bằng 1. Gọi N là trung điểm của BC.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) AA′.AN=0. |
|
b) AB.AC=21. |
|
c) AN.A′B=23 |
|
d) (AN,A′B)=60∘ |
|
Bảng tần số ghép nhóm dưới đây thống kê theo độ tuổi số lượng thành viên nam và thành viên nữ đang sinh hoạt trong một câu lạc bộ dưỡng sinh.
Khoảng tuổi | Số thành viên nam | Số thành viên nữ |
[50;55) | 4 | 3 |
[55;60) | 7 | 4 |
[60;65) | 4 | 5 |
[65;70) | 6 | 3 |
[70;75) | 15 | 7 |
[75;80) | 12 | 14 |
[80;85) | 2 | 13 |
[85;90) | 0 | 1 |
a) Khoảng biến thiên của hai mẫu số liệu đều là 40. |
|
b) Tứ phân vị thứ nhất của mẫu số liệu tuổi của thành viên nam là 61,875. |
|
c) Khoảng tứ phân vị của mẫu số liệu tuổi của thành viên nữ lớn hơn 14. |
|
d) So sánh hai khoảng tứ phân vị của mẫu số liệu, ta được mẫu số liệu tuổi của nam giới đồng đều hơn nữ giới. |
|
An tìm hiểu hàm lượng chất béo (đơn vị: g) có trong 100 g mỗi loại thực phẩm. Sau khi thu thập dữ liệu về 60 loại thực phẩm, An lập được bảng thống kê.
Hàm lượng chất béo (g) | Tần số |
[2;6) | 2 |
[6;10) | 6 |
[10;14) | 10 |
[14;18) | 13 |
[18;22) | 16 |
[22;26) | 13 |
Tính khoảng tứ phân vị của mẫu số liệu trên. (Làm tròn đến chữ số thập phân thứ nhất)
Trả lời: .
Cho hàm số y=f(x) xác định trên R và và có bảng biến thiên như sau:
Phương trình f(∣x2−2x∣)=2 có bao nhiêu nghiệm thực?
Trả lời:
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A,B,C trên đèn tròn sao cho tam giác ABC đều. Độ dài L của ba đoạn dây OA,OB,OC đều bằng l (m). Trọng lượng của chiếc đèn là 27 N và bán kính của chiếc đèn là 0,5 m.
Xác định chiều dài tối thiểu của mỗi sợi dây. Biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 12 N. (Chiều dài tính theo đơn vị cm và làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị k trong đẳng thức vectơ MN=k(AD+BC). (ghi kết quả dưới dạng số thập phân)
Trả lời:
Tại một công ty sản xuất đồ chơi an toàn cho trẻ em, công ty phải chi 40000 USD để thiết lập dây chuyền sản xuất ban đầu. Sau đó, cứ sản xuất được một sản phẩm đồ chơi A, công ty phải trả 6 USD cho nguyên liệu ban đầu và nhân công. Gọi x, (x≥1) là số đồ chơi A mà công ty đã sản xuất và P(x) (đơn vị USD) là tổng số tiền bao gồm cả chi phí ban đầu mà công ty phải chi trả khi sản xuất x đồ chơi A. Người ta xác định chi phí trung bình cho mỗi sản phẩm đồ chơi A là F(x)=xP(x). Xem y=F(x) là hàm số theo x xác định trên nửa khoảng [1;+∞) có phương trình đường tiệm cận ngang là y=b. Tính b.
Trả lời: