Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có đồ thị là đường cong như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Hàm số y=−x3+1 có bao nhiêu điểm cực trị?
Cho hàm số y=f(x) có bảng xét dấu đạo hàm như sau.
Mệnh đề nào sau đây đúng?
Đồ thị của hàm số nào dưới đây có tiệm cận đứng?
Cho hàm số y=−x3+3x+2 có đồ thị là (C). Đồ thị (C) tiếp xúc với trục hoành tại điểm có hoành độ bằng bao nhiêu?
Cho bảng thống kê cân nặng của 30 học sinh lớp 12A1:
Cân nặng | Số học sinh |
[45;50) | 5 |
[50;55) | 10 |
[55;60) | 5 |
[60;65) | 8 |
[65;70) | 2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ u(x1;y1;z1) và v(x2;y2;z2). Khẳng định nào dưới đây đúng?
Giá trị lớn nhất của hàm số y=m−x2mx+1 trên [2;3] là −31 khi m nhận giá trị bằng
Có tất cả bao nhiêu giá trị khác nhau của tham số m để đồ thị hàm số y=x2+mx+4x−1 có hai đường tiệm cận?
Thống kê điểm trung bình môn Toán của một số học sinh lớp 12 được mẫu số liệu sau:
Khoảng điểm | Tần số |
[6,5;7] | 8 |
[7;7,5] | 10 |
[7,5;8] | 16 |
[8;8,5] | 24 |
[8,5;9] | 13 |
[9;9,5] | 7 |
[9,5;10] | 4 |
Phương sai của mẫu số liệu về điểm trung bình môn Toán của các học sinh đó (làm tròn đến chữ số thập phân thứ ba) là
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Căn lều gỗ được phác thảo dưới dạng một hình lăng trụ đứng tam giác OAB.O′A′B′ với hệ trục toạ độ Oxyz như hình vẽ (đơn vị đo lấy theo centimét).
Hai điểm A′ và B′ có tọa độ lần lượt là (240;450;0) và (120;450;300). Mỗi căn lều gỗ có chiều dài là a cm, chiều rộng là b cm, mỗi cạnh bên của mặt tiền có độ dài là c cm. Giá trị a+b+c là
Trong không gian, cho hai vectơ a và b cùng có độ dài bằng 1. Biết rằng góc giữa hai vectơ đó là 45∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) a.b=22. |
|
b) (a+3b).(a−2b)=−5+22. |
|
c) ∣a+b∣=2+2. |
|
d) ∣a−2b∣=0. |
|
Một vật chuyển động thẳng được cho bởi phương trình: s(t)=−31t3+4t2+9t, trong đó t tính bằng giây và s tính bằng mét.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vận tốc của vật tại các thời điểm t=3 giây là v(3)=1 m/s. |
|
b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật đứng yên là 162 m. |
|
c) Gia tốc của vật tại thời điểm t=3 giây là a(3)=2 m/s2. |
|
d) Trong 9 giây đầu tiên, khoảng thời gian (giây) vật tăng tốc là t∈[0;4]. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
a) Hàm số y=f(x) liên tục và xác định trên R. |
|
b) Phương trình y=m có nghiệm với mọi m. |
|
c) Đồ thị hàm số y=f(x) có 2 tiệm cận đứng. |
|
d) Đồ thị hàm số y=f(x)1 có tất cả 3 đường tiệm cận đứng và tiệm cận ngang. |
|
Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và lớp 12B.
Chiều cao (cm) |
Số học sinh của lớp 12A |
Số học sinh của lớp 12B |
[145;150) | 1 | 0 |
[150;155) | 0 | 0 |
[155;160) | 10 | 15 |
[160;165) | 12 | 9 |
[165;170) | 12 | 10 |
[170;175) | 5 | 8 |
a) So sánh hai khoảng biến thiên của hai mẫu số liệu trên, ta thấy mẫu số liệu về chiều cao của lớp 12A phân tán hơn lớp 12B. |
|
b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A là 159,5. |
|
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12B là 9,5. |
|
d) So sánh hai khoảng tứ phân vị của hai mẫu số liệu ghép nhóm, ta thấy mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A phân tán hơn của lớp 12B. |
|
Các bạn học sinh lớp 11A1 trả lời 40 câu hỏi trong một bải kiểm tra. Kết quả được thống kê ở bảng sau:
Số câu trả lời đúng | Số học sinh |
[16;21) | 4 |
[21;26) | 6 |
[26;31) | 8 |
[31;36) | 18 |
[36;41) | 4 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên bằng bao nhiêu? (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời:
Tính tổng các giá trị của m để hàm số y=−31x3+mx2−(m+1)x−m+3 đồng biến trên đoạn có độ dài bằng 2.
Trả lời:
Cho hình hộp ABCD.A′B′C′D′ có các cạnh đều bằng a và B′A′D′=60∘,B′A′A=D′A′A=120∘. Tính số đo (đơn vị độ) của góc giữa hai đường thẳng AB với A′D.
Trả lời:
Một sợi dây có chiều dài là 6 m, được chia thành hai phần. Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Độ dài của cạnh hình tam giác đều bằng bao nhiêu mét để tổng diện tích hai hình thu được là nhỏ nhất? (kết quả làm tròn đến hàng phần trăm)
Trả lời:
Cho hàm số y=f(x) liên tục trên R có bảng xét dấu f′(x) như sau:
Có bao nhiêu giá trị nguyên của m để hàm số y=f(x2+2x+m) có 3 điểm cực trị?
Trả lời:
Giả sử đường thẳng y=x+m cắt đồ thị hàm số y=x−1x tại hai điểm phân biệt A, B. Biết giá trị nhỏ nhất của AB là ab. Tính a+b.
Trả lời: