Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Một sinh viên đo độ dài của một số lá dương xỉ trưởng thành, kết quả như sau:
Lớp độ dài (cm) | Tần số |
[10;20) | 8 |
[20;30) | 6 |
[30;40) | 24 |
[40;50) | 10 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Trong không gian Oxyz, cho vectơ a=(2;−1;5). Tọa độ vectơ −5a là
Trong không gian Oxyz, cho hai điểm A(2;3;4) và B(3;0;1). Độ dài của vectơ AB bằng
Phương trình tiếp tuyến của đồ thị hàm số y=x3−3x2+1 tại điểm A(3;1) là
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ:
Trên đoạn [0;1], hàm số y=f(x) đạt giá trị nhỏ nhất tại
Cho hàm số y=f(x) có đồ thị như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
Đồ thị hàm số y=x3−6x2+11x−6 cắt trục hoành tại bao nhiêu điểm phân biệt?
Bảng sau biểu diễn mẫu số liệu ghép nhóm về chiều cao của 42 mẫu cây ở một vườn thực vật (đơn vị: centimét).
Nhóm | Tần số |
[40;45) | 5 |
[45;50) | 10 |
[50;55) | 7 |
[55;60) | 9 |
[60;65) | 7 |
[65;70) | 4 |
n=42 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần mười) bằng
Đồ thị của hàm số y=x3−3x−1 là đường cong nào trong các đường cong sau?
Đồ thị hàm số y=x+x2−1 có bao nhiêu đường tiệm cận xiên?
Phương trình chuyển động của một vật được xác định bởi công thức S(t)=t+34t với t là thời gian mà vật chuyển động. Xem y=S(t) là một hàm số xác định trên [0;+∞), khi đó tiệm cận ngang của đồ thị hàm số đó là
Xét hàm số y=x+2sinx trên khoảng (0;π).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đồng biến trên khoảng (0;3π). |
|
b) Hàm số đạt cực đại tại x=32π. |
|
c) Hàm số có một điểm cực tiểu. |
|
d) Hàm số nghịch biến trên khoảng (32π;π). |
|
Cho hình lăng trụ tam giác ABC.A′B′C′.
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) AA′+BB′=2CC′. |
|
b) AB−CC′−A′B′=BB′. |
|
c) BB′+2BC+AA′=2BC′. |
|
d) AB′+BA+2CC′=3BB′. |
|
Thời gian chạy tập luyện cự li 100 m của hai vận động viên được cho trong bảng sau:
Thời gian (giây) | Số lần chạy của A | Số lần chạy của B |
[10;10,3) | 2 | 3 |
[10,3;10,6) | 10 | 7 |
[10,6;10,9) | 5 | 9 |
[10,9;11,2) | 3 | 6 |
a) Thời gian trung bình của vận động viên A lớn hơn thời gian trung bình của vận động viên B. |
|
b) Phương sai của mẫu số liệu thời gian chạy của vận động viên A nằm lớn hơn 0,05. |
|
c) Độ lệch chuẩn của mẫu số liệu thời gian chạy của vận động viên B nhỏ hơn 0,3. |
|
d) Dựa trên độ lệch chuẩn, vận động viên A có thành tính luyện tập ổn định hơn vận động viên B. |
|
Một bể chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Sau 10 phút bơm số lượng muối trong bể là 300 gam. |
|
b) Nếu bơm trong một giờ đồng hồ thì số lượng muối trong bể không vượt quá 2 kg. |
|
c) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t)=200+t30t. |
|
d) Khi t đủ lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). |
|
Hằng ngày bà Giang đều đi xe máy từ nhà đến cơ quan. Bảng thống kê dưới đây cho biết thời gian bà Giang đi xe máy từ nhà đến cơ quan.
Nhóm | Tần số |
[20;26) | 4 |
[26;32) | 4 |
[32;38) | 12 |
[38;44) | 10 |
Tính phương sai của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời:
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A,B,C trên đèn tròn sao cho tam giác ABC đều. Độ dài L của ba đoạn dây OA,OB,OC đều bằng l (m). Trọng lượng của chiếc đèn là 27 N và bán kính của chiếc đèn là 0,5 m.
Xác định chiều dài tối thiểu của mỗi sợi dây. Biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 12 N. (Chiều dài tính theo đơn vị cm và làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Cho hình hộp ABCD.A′B′C′D′ có các cạnh đều bằng a và B′A′D′=60∘,B′A′A=D′A′A=120∘. Tính số đo (đơn vị độ) của góc giữa hai đường thẳng AB với A′D.
Trả lời: ∘
Tính tổng các giá trị của m để hàm số y=−2x+2+mx2−4x+7 đạt cực tiểu tại x=3.
Trả lời:
Cho hàm số y=m−xmx−2 (m là tham số). Tính tổng các giá trị nguyên của tham số m để hàm số đã cho nghịch biến trên khoảng (−∞;0)?
Một hợp tác xã nuôi cá thí nghiệm trong hồ. Người ta thấy rằng nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n)=480–20n (gam). Cần phải thả số lượng cá trên một đơn vị diện tích của mặt hồ là bao nhiêu con để cân nặng trung bình của số cá đó lớn nhất?
Trả lời: