Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trên đường tròn bán kính r=5, cung có số đo 8π có độ dài là
Cho cấp số nhân (un) có u2=5, u3=4. Công bội q của cấp số nhân đó là
Cho cấp số nhân (un) có u2=2 và u3=−4. Công bội của cấp số nhân bằng
Cho cấp số cộng (un) có số hạng đầu u1=2 và công sai d=5. Giá trị của u4 bằng
Cho dãy số (un) với un=sinnπ. Khi đó, dãy số (un)
Tập nghiệm của phương trình cot x=3 là
Hàm số y=cosx đồng biến trên khoảng nào sau đây?
Tập giá trị của hàm số y=sin2x là
Góc có số đo 24π đổi sang độ là (gợi ý: 1∘=60′)
Cho cấp số cộng (un) có u5=−15, u20=60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là
Số điểm biểu diễn nghiệm của phương trình tan2x=1 trên đường tròn lượng giác là
Tổng n số hạng đầu tiên của một cấp số cộng cho bởi Sn=3n2−n. Công sai của cấp số cộng đó là
Cho phương trình lượng giác sin(3x+3π)=−23.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình có nghiệm x=−9π+k32πx=3π+k32π,(k∈Z). |
|
b) Phương trình có nghiệm âm lớn nhất bằng −92π. |
|
c) Trên khoảng (0;2π) phương trình đã cho có 3 nghiệm. |
|
d) Tổng các nghiệm của phương trình trong khoảng (0;2π) bằng 97π. |
|
Khi kí kết hợp đồng lao động với người lao động, một doanh nghiệp đề xuất hai phương án trả lương như sau:
Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương được tăng 18 triệu đồng.
Phương án 2: Quý thứ nhất, tiền lương là 24 triệu đồng. Kể từ quý thứ hai trở đi, mỗi quý tiền lương được tăng 1,8 triệu đồng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trong phương án 1: dãy số tiền lương là cấp số cộng có số hạng đầu tiên là u1=120, công sai d1=18. |
|
b) Trong phương án 1: tiền lương người lao động nhận được trong năm thứ ba là 174 triệu đồng. |
|
c) Trong phương án 1: tổng tiền lương người lao động nhận được trong ba năm là 414 triệu đồng. |
|
d) Nếu kí hợp đồng lao động trong ba năm, với mong muốn nhận được tổng số tiền lương cao nhất thì người lao động nên chọn phương án 1. |
|
Cho hàm số f(x)=tan2x−1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị của hàm số tại x=8π bằng 0. |
|
b) Giá trị của hàm số tại x=3π bằng −3−1. |
|
c) Có 3 giá trị x thuộc [0;π] khi hàm số đạt giá trị bằng −2. |
|
d) Hàm số đã cho là hàm tuần hoàn. |
|
Cho phương trình lượng giác 2sin(x−12π)+3=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình tương đương sin(x−12π)=sin(3π). |
|
b) Phương trình có nghiệm là: x=4π+k2π;x=127π+k2π,(k∈Z). |
|
c) Phương trình có nghiệm âm lớn nhất bằng −4π. |
|
d) Số nghiệm của phương trình trong khoảng (−π;π) là hai nghiệm. |
|
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Hùng đang tiết kiệm để mua một cây đàn piano có giá 142 triệu đồng. Trong tháng đầu tiên, anh ta để dành được 20 triệu đồng. Mỗi tháng tiếp theo anh ta để dành được 3 triệu đồng và đưa vào số tiền tiết kiệm của mình. Hỏi ít nhất vào tháng thứ bao nhiêu thì Hùng mới có đủ tiền để mua cây đàn piano đó?
Trả lời:
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc α và β so với phương nằm ngang.
Biết chiều cao của toà nhà là 18,9 m, hai toà nhà cách nhau 10 m. Tính góc α=BAD (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
Trả lời:
Có bao nhiêu số nguyên m để phương trình (m+1)sin2x=1−2m−sin2x có đúng 2 nghiệm thuộc [12π;32π)?
Trả lời:
Sinh nhật bạn của An vào ngày 1 tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 1000 đồng. Đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Trả lời: