Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Góc có số đo 24π đổi sang độ là (gợi ý: 1∘=60′)
Cho cấp số nhân (un) có số hạng đầu u1=−3 và công bội q=32. Số hạng thứ năm của (un) là
Cấp số cộng có u1=−21;d=21 có dạng khai triển là
Cho cấp số cộng (un) có số hạng đầu u1=3, công sai d=−3. Giá trị của u2 bằng
Cho dãy số (un) với un=sinnπ. Khi đó, dãy số (un)
Phương trình cotx=cotα có nghiệm là
Xét hàm số y=sinx trên khoảng (−π;π). Đồ thị của hàm số có hướng đi xuống trên khoảng
Giá trị lớn nhất của hàm số y=3sinx là
Một đường tròn có đường kính là 50 cm. Độ dài của cung tròn trên đường tròn có số đo là 4π (làm tròn đến hàng đơn vị) bằng
Tổng n số hạng đầu tiên của một cấp số cộng cho bởi Sn=3n2−n. Công sai của cấp số cộng đó là
Số nghiệm của phương trình trên đoạn cosx=sinx trên đoạn [−32π;35π] là
Một đồng hồ đánh giờ, khi kim giờ chỉ số n (từ 1 đến 12) thì đồng hồ đánh đúng n tiếng. Trong một ngày (24 giờ) đồng hồ đánh được bao nhiêu tiếng?
Cho phương trình lượng giác sin2x=−21.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình đã cho tương đương sin2x=sin6π. |
|
b) Trong khoảng (0;π) phương trình có 3 nghiệm. |
|
c) Tổng các nghiệm của phương trình trong khoảng (0;π) bằng 23π. |
|
d) Trong khoảng (0;π) phương trình có nghiệm lớn nhất bằng 1211π. |
|
Khi kí kết hợp đồng lao động với người lao động, một doanh nghiệp đề xuất hai phương án trả lương như sau:
Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương được tăng 18 triệu đồng.
Phương án 2: Quý thứ nhất, tiền lương là 24 triệu đồng. Kể từ quý thứ hai trở đi, mỗi quý tiền lương được tăng 1,8 triệu đồng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trong phương án 1: dãy số tiền lương là cấp số cộng có số hạng đầu tiên là u1=120, công sai d1=18. |
|
b) Trong phương án 1: tiền lương người lao động nhận được trong năm thứ ba là 174 triệu đồng. |
|
c) Trong phương án 1: tổng tiền lương người lao động nhận được trong ba năm là 414 triệu đồng. |
|
d) Nếu kí hợp đồng lao động trong ba năm, với mong muốn nhận được tổng số tiền lương cao nhất thì người lao động nên chọn phương án 1. |
|
Cho hàm số f(x)=2cosx+1 và g(x)=sinx+tanx.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số f(x) là D=R. |
|
b) Hàm số f(x) là hàm số tuần hoàn. |
|
c) Tập xác định của hàm số g(x) là D=R\{3π+kπk∈Z}. |
|
d) Hàm số g(x) là hàm số không tuần hoàn. |
|
Cho hàm số f(x)=tan2x−1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị của hàm số tại x=8π bằng 0. |
|
b) Giá trị của hàm số tại x=3π bằng −3−1. |
|
c) Có 3 giá trị x thuộc [0;π] khi hàm số đạt giá trị bằng −2. |
|
d) Hàm số đã cho là hàm tuần hoàn. |
|
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời:
Sinh nhật bạn của An vào ngày 1 tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 1000 đồng. Đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Trả lời:
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình vẽ).
Tìm góc α (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
Trả lời:
Có bao nhiêu số nguyên m để phương trình (m+1)sin2x=1−2m−sin2x có đúng 2 nghiệm thuộc [12π;32π)?
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời: