Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Dãy số nào sau đây là cấp số cộng?
Nghiệm của phương trình cot32x=3 là
Giá trị lớn nhất của hàm số y=3sinx là
Trên khoảng (−6π;−5π), hàm số nào sau đây luôn nhận giá trị dương?
Khẳng định nào sau đây đúng?
Giá trị của các hàm số lượng giác sin45π; sin35π lần lượt bằng
Tìm hiểu thời gian hoàn thành một bài kiểm tra đánh giá thường xuyên (đơn vị: phút) của một số học sinh thu được kết quả sau:
Thời gian (phút) | [10;11) | [11;12) | [12;13) | [13;14) | [14;15) |
Số học sinh | 1 | 2 | 5 | 12 | 20 |
Thời gian trung bình (phút) để hoàn thành bài kiểm tra của các em học sinh là
Cho cấp số cộng (un) thoả mãn {u2−u3+u5=10u4+u6=26. Giá trị S=u1+u5+u9+...+u2021 bằng
Cho phương trình cos(2x−3π)−m=2. Giá trị của m để phương trình có nghiệm là
Cho sina=53; cosa<0; cosb=43; sinb>0. Giá trị sin(a−b) bằng
Cho mẫu số liệu ghép nhóm về lương của nhân viên trong một công ty như sau:
Lương (triệu đồng) | [9;12) | [12;15) | [15;18) | [18;21) | [21;24) |
Số nhân viên | 6 | 12 | 4 | 2 | 1 |
a) Giá trị đại diện của nhóm [9;12) là 10,5. |
|
b) Trung bình lương các nhân viên là 16,5 triệu đồng. |
|
c) Nhóm chứa trung vị là [15;18). |
|
d) Tứ phân vị thứ ba là 15,56. |
|
Cho dãy số (un) có số hạng tổng quát un=4nn.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Ta có un=4nn<0,∀n∈N∗. |
|
b) Ta có unun+1<1,∀n≥1. |
|
c) Ta có u2024<u2023. |
|
d) Dãy số (un) là dãy số tăng. |
|
Một vật dao động xung quanh vị trí cân bằng theo phương trình x=1,5cos(4tπ); trong đó t là thời gian được tính bằng giây và quãng đường h=∣x∣ được tính bằng mét là khoảng cách theo phương ngang của vật đối với vị trí cân bằng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vật ở xa vị trí cân bằng nhất nghĩa là h=1,5 m. |
|
b) Trong 10 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất. |
|
c) Khi vật ở vị trí cân bằng thì cos(4tπ)=0. |
|
d) Trong khoảng từ 0 đến 20 giây thì vật đi qua vị trí cân bằng 4 lần. |
|
Anh Bình là nhân viên của một công ty A. Từ ngày 1/2/2024 anh Bình được nâng lương lên bậc 4, mức lương anh hiện hưởng là 11 718 750 đồng mỗi tháng. Theo quy định của công ty, nếu không bị kỉ luật, không có khen thưởng đặc biệt thì cứ sau 3 năm anh Bình sẽ được nâng một bậc lương, tăng thêm 25% so với bậc lương trước, tối đa là bậc 7. Khi hết bậc 7 sẽ chuyển sang vượt khung. Lương vượt khung năm sau cao hơn năm trước 1% và vẫn nhận hàng tháng. Lương bậc 1 sẽ được tính sau khi hết đúng 1 năm tập sự. Anh Bình là người rất nghiêm túc, không vi phạm kỉ luật. Anh dự định sẽ làm việc 30 năm ở công ty này rồi nghỉ hưu.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Lương bậc 5 của anh Bình sẽ là 14 500 000 đồng. |
|
b) Lương bậc 1 của anh Bình là 6 000 000 đồng. |
|
c) Lương bậc 7 anh Bình là 23 250 000. |
|
d) Tổng tiền lương anh Bình nhận được kể từ khi hết tập sự đến khi nghỉ hưu là 5554357709. |
|
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời:
Sinh nhật bạn của An vào ngày 1 tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 1000 đồng. Đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời:
Từ một vị trí A, người ta buộc hai sợi cáp AB và AC đến một cái trụ cao 15 m, được dựng vuông góc với mặt đất, chân trụ ở vị trí D. Biết CD=9 m và AD=12 m. Tìm góc nhọn α=BAC tạo bởi hai sợi dây cáp đó, đồng thời tính gần đúng α (làm tròn đến hàng phần mười, đơn vị độ).
Trả lời:
Cho hình vuông (C1) có cạnh bằng a. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông (C2).
Từ hình vuông (C2) lại tiếp tục làm như trên ta nhận được dãy các hình vuông C1, C2, C3,..., Cn. Gọi Si là diện tích của hình vuông Ci,(i∈{1;2;3,.....}). Đặt T=S1+S2+S3+...+Sn+.... Biết T=332, tính a?
Trả lời: