Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Góc có số đo 24π đổi sang độ là (gợi ý: 1∘=60′)
Dãy số nào sau đây không phải các số hạng đầu của một cấp số nhân?
Cho cấp số cộng (un) có số hạng đầu u1=2 và công sai d=5. Giá trị của u4 bằng
Cho dãy số (un) với un=sinnπ. Khi đó, dãy số (un)
Phương trình cotx=3 có nghiệm là
Cho hàm số y=sinx có đồ thị như hình vẽ. Mệnh đề nào sau đây sai?
Tập giá trị của hàm số y=sin2x là
Góc có số đo 60∘ đổi sang rađian là
Tổng n số hạng đầu tiên của một cấp số cộng cho bởi Sn=3n2−n. Công sai của cấp số cộng đó là
Số điểm biểu diễn nghiệm của phương trình tan2x=1 trên đường tròn lượng giác là
Phương trình sinx=cosx có số nghiệm thuộc đoạn [−π;π] là
Cho phương trình lượng giác sinx=−21.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình tương đương sinx=sin(6π). |
|
b) Phương trình có nghiệm là: x=−6π+k2π;x=67π+k2π,(k∈Z). |
|
c) Phương trình có nghiệm âm lớn nhất bằng −3π. |
|
d) Số nghiệm của phương trình trong khoảng (−π;π) là ba nghiệm. |
|
Trong một hồ sen, số lá sen ngày hôm sau bằng 3 lần số lá sen ngày hôm trước. Biết rằng ngày đầu có 1 lá sen thì tới ngày thứ 10 hồ sẽ đầy lá sen.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Nếu ngày đầu có 9 lá sen thì tới ngày thứ 8 hồ sẽ đầy lá sen. |
|
b) Số lá sen lập thành cấp số nhân (un) với u1=1 và công bội q=3. |
|
c) Số lá sen lập thành cấp số cộng (un) với u1=1 và công bội q=3. |
|
d) Nếu ngày đầu có 9 lá sen thì tới ngày thứ 9 hồ sẽ đầy lá sen. |
|
Cho hàm số f(x)=tanx và g(x)=cot2x−2sin2x.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định hàm số f(x) là D=R\{2π+kπk∈Z}. |
|
b) Hàm số f(x) là hàm số không tuần hoàn. |
|
c) Tập xác định hàm số g(x) là D=R\{kπk∈Z}. |
|
d) Hàm số g(x) là hàm số tuần hoàn. |
|
Cho phương trình lượng giác 2sinx=2.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình tương đương sinx=sin4π. |
|
b) Phương trình có nghiệm là: x=3π+k2π;x=43π+k2π,(k∈Z). |
|
c) Phương trình có nghiệm dương nhỏ nhất bằng 4π. |
|
d) Số nghiệm của phương trình trong khoảng (−2π;2π) là hai nghiệm. |
|
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời:
Người ta trồng 3003 cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là bao nhiêu?
Trả lời:
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Trong Vật lí, phương trình tổng quát của một vật dao động điều hoà cho bởi công thức x(t)=Acos(ωt+φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t,A là biên độ dao động (A>0) và φ∈[−π;π] là pha ban đầu của dao động. Xét hai dao động điều hoà có phương trình: x1(t)=3⋅cos(6πt+6π) (cm) và x2(t)=3⋅cos(6πt+4π) (cm). Từ dao động tổng hợp x(t)=x1(t)+x2(t), sử dụng công thức biến đổi tổng thành tích ta tìm được pha ban đầu của dao động tổng hợp này bằng nmπ với nm là phân số tối giản có mẫu dương. Tính n−m.
Trả lời:
Có bao nhiêu số nguyên m để phương trình (m+1)sin2x=1−2m−sin2x có đúng 2 nghiệm thuộc [12π;32π)?
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời: