Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

💯 Ôn tập và kiểm tra chương III SVIP
Cho tam giác ABC có AB=11,BC=6,CA=7. Giá trị của cosA là
Cho sinx=41,90∘<x<180∘. Khẳng định nào sau đây đúng?
Giá trị biểu thức P=cos30∘cos60∘−sin30∘sin60∘ bằng
Để đo chiều cao tương đối h của một ngọn đồi (so với mặt đất gần nhất), người ta đặt giác kế (dụng cụ đo góc trên thực địa) tại hai vị trí A (chân) và B (đỉnh) của một tòa nhà, đo được các góc α=39o,β=16o. Biết rằng độ cao của tòa nhà là 53m, hỏi h gần với giá trị nào dưới đây nhất? |
(hình vẽ có thể không đúng tỉ lệ) |
Bán kính của đường tròn nội tiếp tam giác đều cạnh a là
Tam giác ABC có AB=6,AC=3,BAC=30o. Diện tích tam giác ABC bằng
Cho tam giác ABC có AB=8 cm, AC=18 cm và diện tích bằng 64 cm2. Giá trị sinA là
Tam giác ABC có AB=26−2, BC=3, CA=2. Gọi D là chân đường phân giác trong góc A, góc ADB có số đo bằng
Khẳng định nào sai?
Cho hai góc α và β với α+β=90∘. Giá trị của biểu thức P=sinαcosβ+sinβcosα bằng
Cho biết sin3α=53. Giá trị của P=3sin23α+5cos23α bằng
Từ vị trí A người ta quan sát một cây cao (hình vẽ). Biết AH⊥HB,AH=4 m, HB=20 m, BAC=45∘. Chiều cao của cây gần nhất với giá trị nào dưới đây?
Tam giác đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng
Tam giác đều nội tiếp đường tròn bán kính R=4 cm có diện tích bằng
Cho tam giác ABC có a=2, b=6, c=3+1. Số đo góc A bằng
Cho tanα=4. Tính giá trị biểu thức P=−sinα+cosα2sinα−2cosα.
Cho tam giác ABC. Giá trị biểu thức P=cosA.cos(B+C)−sinA.sin(B+C) bằng
Cho biết sinα−cosα=51. Giá trị của P=sin4α+cos4α bằng
Cho biết cosα=−32. Giá trị của P=2cotα+tanαcotα+3tanα bằng
Tam giác ABC có trọng tâm G. Hai trung tuyến BM = 9, CN = 12 và BGC=120o. Độ dài cạnh AB bằng |
|
Tam giác ABC có AB = c = 6cm, AC = b = 5cm, BC = a = 7cm. Độ dài đường trung tuyến ma ứng với cạnh BC bằng |
|
Tứ giác lồi ABCD có đường chéo AC = 15, BD = 12. Góc giữa hai đường chéo bằng 60o. Diện tích tứ giác ABCD bằng
Cho góc xOy=30∘. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB=1. Khi OB có độ dài lớn nhất thì độ dài của đoạn OA bằng
Bán kính đường tròn ngoại tiếp tam giác ABC biết AB=12 và cot(A+B)=31 bằng