Dương Lê Minh Đức
Giới thiệu về bản thân
a) 2022 . 999 + 2022
= 2022 . 1000
= 2022000
b) 5 . 22 - 18 : 3
= 5 . 4 - 6
= 20 - 6
= 14
20,22 x 97 + 20,22 : 0,25 - 20,22
= 20,22 x 97 + 20,22 x 4 - 20,22
= 20,22 x ( 97 + 4 - 1 )
= 20,22 x 100
= 2022
x . ( x3 )2 = x5
x . x6 = x5
x7 = x5
=> x \(\in\) { 0; \(\pm\)1 }
2 . [ ( -3 ) + 1 ] + 10
= 2. ( -2 ) + 10
= -4 + 10
= 10 - 4
= 6
a) 15 -(-203 ) - 203
= 15 + 203 - 203
= 15 + ( 203 - 203 )
= 15 + 0
= 15
10000
A = \(\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{403.407}\)
A = 4( \(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{403.407}\) )
A = 4 ( \(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...-\dfrac{1}{407}\) )
A = 4 . ( \(\dfrac{1}{5}-\dfrac{1}{407}\) )
A = 4 . \(\dfrac{402}{2035}\)
A = \(\dfrac{1608}{2035}\)
tự so sánh đi
xy - x + y = 6
x( y - 1 ) + ( y - 1 ) = 5
( y - 1 ) . ( x + 1 )
Ư( 5 ) = { \(\pm1;\pm5\) }
=> ta có bảng sau:
x + 1 | -1 | -5 | 1 | 5 |
x | -2 | -6 | 0 | 4 |
y - 1 | -1 | -5 | 1 | 5 |
y | 0 | -4 | 2 | 6 |
=> x \(\in\) { -2; -6; 0; 4 }
y \(\in\) { 0; -4; 2; 6 }
b) ( 4x + 3 ) \(⋮\) ( x - 2 )
4x + 3 = 4x - 2 + 5
4x - 2 \(⋮\) x - 2
=> 5 \(⋮\) x - 2
x - 2 \(\in\) Ư(5)
Ư( 5 ) = { \(\pm1;\pm5\) }
=> ta có bảng sau:
x - 2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 |
7 |
vậy x \(\in\) { 1; \(\pm3\); 7 }
a) A = 2 + 22 + 23 + ... + 210
2A = 22 + 24 + 25 + ... + 211
2A = ( 22 + 24 + 25 + ... + 211 ) - ( 2 + 22 + 23 + ... + 210 )
A = 211 - 2
A + 2 = 2x - 1 \(\rightarrow\) 211 - 2 + 2 = 2x -1
211 = 2x - 1
<=> 11 = x - 1
x = 11 + 1
x = 12