![](https://rs.olm.vn/images/background/bg0.jpg?v=2)
![](https://rs.olm.vn/images/avt/1.png?131636612720)
Lê Minh Vũ
Giới thiệu về bản thân
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_mam_non.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_tan_binh.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_chuyen_can.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_cao_thu.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_thong_thai.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_dai_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
\(15-\dfrac{x}{2}=\dfrac{3}{7}\)
\(\dfrac{x}{2}=15-\dfrac{3}{7}\)
\(\dfrac{x}{2}=\dfrac{102}{7}\)
\(x\times7=102\times2\)
\(x\times7=204\)
\(x=204\div7\)
\(x=\dfrac{204}{7}\)
\(x\div\dfrac{2}{3}+\dfrac{4}{5}=\dfrac{8}{7}\times\dfrac{7}{10}\)
\(x\div\dfrac{2}{3}+\dfrac{4}{5}=\dfrac{4}{5}\)
\(x\div\dfrac{2}{3}=0\)
\(x=0\)
\(\left(2x-6\right)\times\left(5-x\right)=0\)
\(2x-6=0;5-x=0\)
\(x=3;x=5\)
Vậy: \(x=3;x=5\)
\(4^{14}\times5^{28}\)
\(=4^{14}\times\left(5^2\right)^{14}\)
\(=4^{14}\times25^{14}\)
\(=\left(4\times25\right)^{14}\)
\(=100^{14}\)
\(15\times\left(32-24\div x\right)-230=70\)
\(15\times\left(32-24\div x\right)=300\)
\(32-24\div x=20\)
\(24\div x=12\)
\(x=2\)
\(\left(2-x\right)\times\left(\dfrac{4}{5}-x\right)< 0\)
Th1:
\(2-x>0\Leftrightarrow x>2\)
\(\dfrac{4}{5}-x< 0\Leftrightarrow x< \dfrac{4}{5}\)
( Loại )
Th2:
\(2-x< 0\Leftrightarrow x< 2\)
\(\dfrac{4}{5}-x>0\Leftrightarrow x>\dfrac{4}{5}\)
=> \(\dfrac{4}{5}< x< 2\)
\(\left(x-\dfrac{3}{2}\right)\times\left(2x+1\right)>0\)
Th1:
\(x-\dfrac{3}{2}>0\Leftrightarrow x>\dfrac{3}{2}\)
\(2x+1>0\Leftrightarrow2x>1\Leftrightarrow x>\dfrac{1}{2}\)
( 1 )
Th2:
\(x-\dfrac{3}{2}< 0\Leftrightarrow x< \dfrac{3}{2}\)
\(2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< -\dfrac{1}{2}\)
( 2 )
Từ ( 1 ) và ( 2 ), ta có:
\(\Rightarrow x< -\dfrac{1}{2};x>\dfrac{3}{2}\)
Sửa đề:
\(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+...+\dfrac{2}{97\times100}\)
\(=2\times\left(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{97\times100}\right)\)
\(=\dfrac{2}{3}\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{97\times100}\right)\)
\(=\dfrac{2}{3}\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\times\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\times\dfrac{99}{100}\)
\(=\dfrac{198}{300}\)
\(=\dfrac{33}{50}\)
Diện tích xung quanh của bể cá là:
\(25\times25\times4=2500\left(dm^2\right)\)
Thể tích của bể cá đó là:
\(25\times25\times25=15625\left(dm^3\right)\)
Tính giá trị của biểu thức sau ( hợp lí nếu có thể ):
a) \(\left(-25\right)\times\left(-5\right)\times\left(-0,4\right)\times\left(-0,2\right)\)
\(=\left[25\times\left(-0,2\right)\right]\times\left[5\times\left(-0,4\right)\right]\)
\(=\left(-5\right)\times2\)
\(=-10\)
b) \(\left(-0,25\right)\times0,02\times40\times\left(-50\right)\times\left(-201,43\right)\)
\(=\left(-0,25\times40\right)\times\left(-50\times0,02\right)\times\left(-201,43\right)\)
\(=\left(-10\right)\times\left(-1\right)\times\left(-201,43\right)\)
\(=10\times\left(-201,43\right)\)
\(=-2014,3\)