Phạm Trần Hoàng Anh

Giới thiệu về bản thân

Chất lượng góp phần giúp các bạn hiểu sâu hơn về bài giải cũng như tạo thương hiệu cho chính mình
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

cooks (always -> thói quen -> HTĐ)

meet (always -> thói quen -> HTĐ)

doesn't do (regularly -> thói quen -> HTĐ)

boils (điều hiển nhiên -> HTĐ)

Are (you a good ..)

`A = 5x y^2 + xy - 3xy^2 - x^2 y + 2xy + x^2 y - 2xy^2 + xy + 4`

`= (5x y^2  - 3xy^2 - 2xy^2) + (x^2 y - x^2 y) + (2xy + xy + xy) + 4`

`= 0 + 0 + 4xy + 4`

`= 4xy + 4`

Bậc: 2

b) Thay `x = 2; y = 1` vào `A` ta được: 

`A = 4 . 2 . 1 + 4 = 8 + 4 = 12`

c) Ta có: `A + B = -2xy + 1`

`=> B =  -2xy + 1 - A`

`=> B =  -2xy + 1 - (4xy + 4)`

`=> B =  -2xy + 1 - 4xy - 4`

`=> B =  -6xy - 3`

Vậy ....

 

1. Where do they live?

2. What do those girls sell (there)?

3. What time do they get home (every night)?

4. What language does she speak well?

Xét `ΔEAD` và `ΔBAC` có: 

`EA = AB` (giả thiết)

\(\widehat{EAD}=\widehat{BAC}\) (2 góc đối đỉnh)

`AD = AC` (giả thiết)

`=> ΔEAD = ΔBAC` (cạnh - góc - cạnh)

`=> DE = BC` (2 cạnh tương ứng)

b) Gọi `I` là giao điểm của phân giác \(\widehat{BAE}\) và BE

Xét `ΔAEB` cân tại `A` có: 

\(\widehat{AEB}=\dfrac{180^o-\widehat{BAE}}{2}\)

AI là phân giác của \(\widehat{EAB}\) đồng thời là đường cao `=> AI` \(\perp\) `EB (1)`

Xét `ΔDAC` cân tại `A` có: 

\(\widehat{ACD}=\dfrac{180^o-\widehat{CAD}}{2}\)

Mà \(\widehat{CAD}=\widehat{BAE}\) (2 góc đối đỉnh)

=> \(\widehat{AEB}=\widehat{ACD}\)

Và `2` góc này so le trong 

`=> EB` // `DC (2)`

Từ `(1)` và `(2) => AI` \(\perp\) `DC`

`2x^2 - 6x + 1 = 0`

`Δ' = \(\left(\dfrac{b}{2}\right)^2-ac\) = 3^2 - 2.1 = 7 > 0`

=> Phương trình có 2 nghiệm phân biệt

\(\left[{}\begin{matrix}x=\dfrac{-\dfrac{b}{2}+\sqrt{\Delta}}{2}=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{-\dfrac{b}{2}-\sqrt{\Delta}}{2}=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)

Vậy ....

`111....11 (2001` chữ số `1)`

Ta có: 

`1+1+1+...+1+1 (2001` số hạng `1) `

`= 1 . 2001 `

Mà `2001 ⋮ 3 `

`=> 1+1+1+...+1+1 ⋮ 3 `

Hay `111...11 (2001` chữ số `1) ⋮ 3`

Mà `111...11  ⋮ 1` và chính nó

Nên `111...11 (2001` chữ số `1)` là hợp số

`3^3 . 22 - 3^2 . 19`

`= 27 . 22 - 9 . 19`

`= 594 -171`

`= 423`

\(A=3+3^2+3^3+...+3^{99}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

`A =` \(\left(3+3^2+3^3\right).\left(1+3^3+...+3^{96}\right)\)

`A =` \(39.\left(1+3^3+...+3^{96}\right)\)

Mà `39 ⋮ 13`

`=> A  ⋮ 13` (đpcm)

`x` thuộc `Ư(14) =` {`-14;-7;-2;-1;1;2;7;14`}

Mà `2 ≤ x ≤ 8`

`=> x` thuộc {`2;7;14`}

Vậy ` x` thuộc {`2;7;14`}