![](https://rs.olm.vn/images/background/bg0.jpg?v=2)
![](https://rs.olm.vn/images/avt/1.png?13)
Phạm Thảo Nguyên
Giới thiệu về bản thân
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_mam_non.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_tan_binh.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_chuyen_can.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_cao_thu.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_thong_thai.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_dai_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
Xét có suy ra .
Xét có suy ra .
Suy ra ; ; .
.
Vậy .
a) Vì , là các đường trung tuyến của nên , .
Do đó là đường trung bình của , suy ra // . (1)
Ta có là đường trung bình của nên // . (2)
Từ (1) và (2) suy ra // .
b) Xét , ta có là đường trung bình.
Xét , ta có là đường trung bình.
Do đó // , // .
Suy ra // .
a) Qua vẽ một đường thẳng song song với cắt tại .
Xét có và // nên (định lí đường trung bình của tam giác).
Mặt khác , do đó .
Xét có và // nên hay là trung điểm của .
b) Xét có là đường trung bình nên . (1)
Xét có là đường trung bình nên . (2)
Từ (1) và (2) suy ra .
a) Kẻ // , .
là đường trung bình trong
Suy ra là trung điểm của (1).
là đường trung bình trong
Suy ra là trung điểm của (2).
Từ (1) và (2) suy ra .
b) Có ; , nên .
Xét tam giác , áo dụng tính chất tia phân giác trong tam giác, ta có:
Vậy // (Định lí đảo của định lí Thalès)
Suy ra (Định lí Thalès)
Vậy nên
Tam giác cân tại nên cm.
a) Xét tam giác , áp dụng tính chất tia phân giác ta có:
Suy ra suy ra (cm)
Do đó, (cm).
b) Do vuông góc với phân giác nên là phân giác ngoài tại đỉnh của tam giác .
Vậy hay
Gọi độ dài là thì .
Vậy (cm).