Nguyễn Ngọc Anh Minh

Giới thiệu về bản thân

Chào mừng các bạn đã ghé thăm nhà của mình !
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{4}\)

\(A=2A-A=1-\dfrac{1}{8}=\dfrac{7}{8}\)

Hai số lẻ liên tiếp có hiệu bằng 2

Số bé là

(100 - 2):2 = 49

Số lớn là

100-49 = 51

O A M N

Xét tg vuông AMO và tg vuông ANO có

AO chung; OM=ON (bán kính (O))

=> tg AMO = tg ANO (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow AM=AN\) (đpcm)

\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) => AO là phân giác \(\widehat{MAN}\) (đpcm)

\(\Rightarrow\widehat{AOM}=\widehat{AON}\) => AO là phân giác \(\widehat{MON}\) (đpcm)

\(=3^3.3^n+3.3^n+2^3.2^n+2^2.2^n=\)

\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)=30.3^n+12.2^n=\)

\(=6\left(5.3^n+2.2^n\right)⋮6\)

\(\Leftrightarrow4x^2-12x+9-4x^2+x-20x-5=-9\)

\(\Leftrightarrow31x=13\Leftrightarrow x=\dfrac{13}{31}\)

 

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}\)

\(2A=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{20-18}{18.19.20}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}=\dfrac{1}{2}-\dfrac{1}{19.20}\)

\(\Rightarrow A=\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right):2\)

A B C O D E

a/

\(sđ\widehat{ACO}=\dfrac{1}{2}\left(sđcungAD-sđcungBE\right)\) (góc có đỉnh ngoài hình tròn)

\(\Rightarrow sđ\widehat{ACO}=\dfrac{1}{2}sđcungAD-\dfrac{1}{2}sđcungBE\) (1)

Ta có

\(sđ\widehat{AOD}=sđcungAD\) (Góc có đỉnh là tâm đường tròn)

\(\Rightarrow\dfrac{1}{2}sđcungAD=\dfrac{1}{2}sđ\widehat{AOD}\) (2)

Ta có

BC = OB = R => tg BOC cân tại B \(\Rightarrow\widehat{ACO}=\widehat{BOE}\) (góc ở đáy tg cân)

\(sđ\widehat{BOE}=sđcungBE\) (Góc có đỉnh là tâm đường tròn)

\(\Rightarrow\dfrac{1}{2}sđ\widehat{ACO}=\dfrac{1}{2}sđ\widehat{BOE}=\dfrac{1}{2}sđcungBE\) (3)

Thay (2) và (3) vào (1)

\(\Rightarrow sđ\widehat{ACO}=\dfrac{1}{2}sđ\widehat{AOD}-\dfrac{1}{2}sđ\widehat{ACO}\)

\(\Rightarrow2.sđ\widehat{ACO}=sđ\widehat{AOD}-sđ\widehat{ACO}\)

\(\Rightarrow sđ\widehat{AOD}=3.sđ\widehat{ACO}\)

b/

Ta có

AB = R = OA = OB => tg OAB là tg đều

\(\Rightarrow\widehat{OAB}=\widehat{OBA}=60^o\)

\(\Rightarrow\widehat{OBC}=180^o-\widehat{OBA}=180^o-60^o=120^o\)

Xét tg cân BOC có

\(\widehat{BCO}+\widehat{BOC}=180^o-\widehat{OBC}=180^o-120^o=60^o\)

Mà \(\widehat{BCO}=\widehat{BOC}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{BCO}=\widehat{BOC}=30^o\)

Xét tg AOC có

\(\widehat{AOC}=180^o-\left(\widehat{OAB}+\widehat{BOC}\right)=180^o-\left(60^o+30^o\right)=90^o\)

=> tg AOC vuông tại O

AC = AB + BC = 2R

\(\Rightarrow CO=\sqrt{AC^2-OA^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

 

Gọi K là giao của AI với MN

Áp dụng talet trong tam giác

\(\dfrac{MK}{BI}=\dfrac{NK}{CI}\Rightarrow\dfrac{MK}{NK}=\dfrac{BI}{CI}=1\)

=> MK = NK

Ta có

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)

Ta có

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)

Từ (1) và (2)

\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx=0\)

A B H D C K

a/

AB= BD (gt) => tg ABD cân tại B

\(\Rightarrow\widehat{BAD}=\widehat{BDA}\) (góc ở đáy tg cân)

b/

\(AB\perp AC;DK\perp AC\) => AB//DK

\(\Rightarrow\widehat{BAD}=\widehat{ADK}\) (góc so le trong)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}\) (cmt)

\(\Rightarrow\widehat{BDA}=\widehat{ADK}\)

Xét tg vuông AHD và tg vuông AKD

AD chung

\(\widehat{BDA}=\widehat{ADK}\) (cmt)

=> tg AHD = tg AKD (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

\(\Rightarrow\widehat{HAD}=\widehat{CAD}\) => AD là phân giác của \(\widehat{HAC}\)

c/

tg AHD = tg AKD (cmt) => AK = AH