Nguyễn Ngọc Anh Minh

Giới thiệu về bản thân

Chào mừng các bạn đã ghé thăm nhà của mình !
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

A B H D E C I

a/

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)

b/

Xét tg vuông AHB có

\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông AHC có

\(HC^2=CE.AC\) (lý do như trên)

\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)

Mà \(HB.HC=AH^2\) (cmt)

\(\Rightarrow CE.BD.AC.AB=AH^4\)

c/

\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE

\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD

=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN

Xét tg vuông ADH và tg vuông ADE có

HD = AE (cạnh đối HCN)

AD chung

=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{AED}=\widehat{AHD}\) 

\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) ) 

\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)

\(\widehat{C}+\widehat{B}=90^o\) (2)

\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\)  (3)

Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC

Ta có

\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)

\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB

Mà IA= IC (cmt)

=> IB=IC => I là trung điểm của BC

 

 

 

 

 

 

 

A B C D M E

\(MD\perp AB\) (gt)

\(AC\perp AB\) (gt)

=> MD//AC (1) \(\Rightarrow\widehat{BMD}=\widehat{C}\) (góc đồng vị)

Mà \(\widehat{B}=\widehat{C}\) (gt)

\(\Rightarrow\widehat{B}=\widehat{BMD}\) => tg BMD vuông cân tại D => MD=BD (2)

\(ME\perp AC\) (gt)

\(AB\perp AC\) (gt)

=> ME//AB (3)

C/m tương tự ta cũng có tg CME vuông cân tại E => ME=CE (4)

Từ (1) và (3) => ADME là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau)

=> MD = AE (5) và ME = AD (6)

Ta có

\(C_{ADME}=\left(MD+ME\right)x2\)

AE = AC-CE Từ (5) => MD=AC - CE Từ (4) => MD = AC - ME

\(\Rightarrow C_{ADME}=\left(AC-ME+ME\right)x2=2xAC\) không đổi

 

 

THeo đề bài ta có

\(n+18=p^2\)

\(n-41=q^2\)

\(\Rightarrow p>q\)

\(\Rightarrow n+18-\left(n-41\right)=59=p^2-q^2\)

\(\Rightarrow\left(p-q\right)\left(p+q\right)=59=1.59\)

TH1

\(\Rightarrow\left\{{}\begin{matrix}p-q=1\\p+q=59\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=29\end{matrix}\right.\)

Thay p=30 vào \(n+18=p^2\)

\(\Rightarrow n+18=900\Rightarrow n=900-18=882\)

TH2

\(\left\{{}\begin{matrix}p-q=59\\p+q=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=-29\end{matrix}\right.\)

Giống TH1 có n=882

 

Gọi d là ước của 9n+2 và 12n+3 nên

\(9n+2⋮d\Rightarrow4\left(9n+2\right)=36n+8⋮d\)

\(12n+3⋮d\Rightarrow3\left(12n+3\right)=36n+9⋮d\)

\(\Rightarrow36n+9-\left(36n+9\right)=1⋮d\Rightarrow d=1\)

=> 9n+2 và 12n+3 là 2 số nguyên tố cùng nhau

 

\(=2017.2018.2023.\left(58-58\right)=0\)

Gọi 2 số là a và b giả sử a>b

Theo đề bài

\(a-32=b\)

Ta có

\(a< 50\Rightarrow a-32=b< 50-32=18\Rightarrow10< b< 18\) 

b 10 11 12 13 14 15 16 17
a 42 43 44 45 46 47 48 49

Do b là số có 2 chữ số nên b:9 có thương là 1 => a:9 có số dư là 1

Nhìn bảng trên chỉ có a=46 thỏa mãn đk khi a:9 dư 1

=> a=46; b=14

 

A B C M N H E

a/

MN//BC (gt)

\(\Rightarrow\widehat{BMN}=\widehat{BAC}=60^o\) (Góc đông vị)

\(\widehat{BNM}=\widehat{BCA}=60^o\) (góc đồng vị)

\(\widehat{ABC}=60^o\)

\(\Rightarrow\widehat{BMN}=\widehat{BNM}=\widehat{ABC}=60^o\)

=> tg BMN là tg đều => BM = BN

Ta có

AM = AB-BM; CN = BC-BN

Mà AB = BC

=> AM=CN (1)

tg BMN là tg đều nên 3 đường cao cũng đồng thời là 3 đường phân giác; 3 đường trung tuyến => H cũng đồng thời là trọng tâm của tg BMN

Gọi h là đường cao của tg BMN

=> \(HM=HN=\dfrac{2}{3}h\) (2)

\(\widehat{BMH}=\widehat{NMH}=\widehat{MNH}=\widehat{BNH}=\dfrac{60^o}{2}=30^o\)

\(\widehat{AMN}=180^o-\widehat{BMN}=180^o-60^o=120^o\)

\(\widehat{CNM}=180^o-\widehat{BNM}=180^o-60^o=120^o\)

\(\widehat{AMH}=\widehat{AMN}+\widehat{NMH}=120^o+30^o=150^o\)

\(\widehat{CNH}=\widehat{CNM}+\widehat{MNH}=120^o+30^o=150^o\)

\(\Rightarrow\widehat{AMH}=\widehat{CNH}\) (3)

Từ (1) (2) (3) => tg AHM = tg CHN (c.g.c)

b/

 

 

Phân số chỉ số tiền của Hải là

\(3:\left(3+5\right)=\dfrac{3}{8}\) Tổng số tiền của hai anh em

Phân số chỉ số tiền của Hải là sau khi cho An 10000 đồng là

\(1:\left(1+3\right)=\dfrac{1}{4}\) Tổng số tiền của hai anh em

Phân số chỉ 10000 đồng là

\(\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{1}{8}\) Tổng số tiền của hai anh em

Tổng số tiền của hai anh em là

\(10000:\dfrac{1}{8}=80000\) đồng

Số tiền của Hải lúc đầu là

\(\dfrac{3}{8}x80000=30000\) đồng

Số tiền của A lúc đầu là

80000-30000=50000 đồng

 

\(18^3< 32^3< 32^9\)

\(\Rightarrow18^3< 32^9\Rightarrow\left(-18\right)^3>\left(-32\right)^9\)

Ta có

\(A=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+...+2^{23}\left(1+2\right)=\)

\(=3\left(2+2^3+2^5+...+2^{23}\right)⋮3\)

Mà \(A⋮2\)

2 và 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow A⋮2.3\Rightarrow A⋮6\)

Ta có

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+2^{^{ }22}\left(1+2+2^2\right)=\)

\(=7\left(2+2^4+2^7+...+2^{22}\right)⋮7\)

6 và 7 là hai số nguyên tố cùng nhau

\(\Rightarrow A⋮6x7\Rightarrow A⋮42\)