

Nguyễn Ngọc Anh Minh
Giới thiệu về bản thân



































Dựng tiếp tuyến với đường tròn tại B, gọi K là giao của tiếp tuyến với đường tròn tại M với tiếp tuyến với đường tròn tại B
Ta có
\(AF\perp AB;OD\perp AB;BK\perp AB\) => AF//OD//BK
\(\Rightarrow\dfrac{DE}{OA}=\dfrac{DK}{OB}\) (Talet)
Mà OA=OB
=> DE=DK (1)
Xét tg ABF có
OD//AF => \(\dfrac{DF}{OA}=\dfrac{DB}{OB}\) (Talet trong tg)
Mà OA=OB => DF=DB (2)
\(\widehat{EDF}=\widehat{KDB}\) (góc đối đỉnh)
Từ (1) (2) (3) => tg EDF = tg KDB (c.g.c)
=> EF=KB
Mà KB=KM (Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)
=> EF=KM
Ta có
EA=EM (Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)
\(\Rightarrow EA.EF=EM.KM\)
Xét tg vuông EAO và tg vuông EMO có
EO chung
EA=EM (cmt)
=> tg EAO = tg EMO (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{EOA}=\widehat{EOM}\) (4)
C/m tương tự ta cũng có tg KMO = tg KBO \(\Rightarrow\widehat{KOB}=\widehat{KOM}\) (5)
Mà \(\widehat{EOA}+\widehat{EOM}+\widehat{KOB}+\widehat{KOM}=180^o\) (6)
Từ (4) (5) (6) \(\Rightarrow\widehat{EOM}+\widehat{KOM}=\widehat{KOE}=90^o\)
=> tg KOE là tg vuông tại O
Ta có \(OM\perp KE\) (KE là tiếp tuyến với đường tròn tại M)
Xét tg vuông KOE có
\(OM^2=KM.EM\) (Trong tg vuông bình phương đường cao từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow KM.EM=EF.EA=OM^2\) không đổi
Khoảng cách giữa 1 số lẻ và một số chẵn là 1 đơ vị
Khoảng cách giữa 2 số chẵn liên tiếp là 2 đơn vị
Giữa 5 số chẵn có 4 khoảng cách
Khoảng cách hay hiệu giữ 2 số lẻ cần tìm là
1x2+2x4=10 đơn vị
Chia số lẻ bé thành 5 phần bằng nhau thì số lẻ lớn là 7 phần
Hiệu số phần bằng nhau là
7-5=2 phần
Giá trị 1 phần là
10:2=5 phần
Số bé là
5x5=25
Số lớn là
5x7=35
Đạ biểu thức trong dấu ngoặc đơn là A
\(A=\dfrac{1}{2.1.3.2}+\dfrac{1}{2.2.3.3}+\dfrac{1}{2.3.3.4}+\dfrac{1}{2.4.3.5}+...+\dfrac{1}{2.18.3.19}+\dfrac{1}{2.19.3.20}=\)
\(=\dfrac{1}{2.3}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)=\)
Đặt biểu thức trong dấu ngoặc đơn là C
\(C=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{20-19}{19.20}=\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}=\)
\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)
\(\Rightarrow B=1-\dfrac{1}{6}.C=1-\dfrac{1}{6}.\dfrac{19}{20}=\dfrac{101}{120}\)
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
Số dư lớn nhất trong 1 phép chia bằng số chia -1
=> số dư lớn nhất trong phép chia trên = 5-1=4
Theo đề bài số dư = {2;4}
Với số dư = 2 thì thương là 2:2=1
=>x=5x1+2=7
Với số dư = 4 thì thương là 4:2=2
=> x=5x2+4=14
a/ Hai tg ADC và tg BDC có chung đáy CD và đường cao từ A->CD = đường cao từ B->CD nên \(S_{ADC}=S_{BDC}\)
b/
Ta có
\(AP=3xPC\Rightarrow\dfrac{PC}{AP}=\dfrac{1}{3}\Rightarrow\dfrac{PC}{AC}=\dfrac{1}{4}\)
Hai tg PCQ và tg ACQ có chung đường cao từ Q->AC nên
\(\dfrac{S_{PCQ}}{S_{ACQ}}=\dfrac{PC}{AC}=\dfrac{1}{4}\)
Hai tg trên lại có chung đáy CQ nên
\(\dfrac{S_{PCQ}}{S_{ACQ}}=\) đường cao từ P->CD / đường cao từ A->CD = \(\dfrac{1}{4}\)
Hai tg PDQ và tg ADQ có chung đáy DQ nên
\(\dfrac{S_{PDQ}}{S_{ADQ}}=\) đường cao từ P->CD / đường cao từ A->CD =\(\dfrac{1}{4}\)
Hai tg PDQ và tg BQP có chung đáy PQ và đường cao từ D->PQ = đường cao từ B->PQ nên \(S_{PDQ}=S_{BQP}\)
Hai tg ADQ và tg BQD có chung đáy DQ và đường cao từ A->CD = đường cao từ B->CD nên \(S_{ADQ}=S_{BQD}\)
\(\Rightarrow\dfrac{S_{BQP}}{S_{BQD}}=\dfrac{S_{PDQ}}{S_{AQD}}=\dfrac{1}{4}\)
\(\overline{abc}xc=\overline{dac}\)
=> c = 1 hoặc c = 5 hoặc
+ Với c=1
\(\overline{ab1}x1=\overline{da1}\Rightarrow\overline{ab}=\overline{da}\Rightarrow a=b=d\)
=> các số có 4 chữ số \(\overline{aaa1}\) thỏa mãn đề bài
+ Với c=5
\(\overline{ab5}x5=\overline{da5}\Rightarrow a< 2\Rightarrow a=1\)
\(\Rightarrow\overline{1b5}x5=\overline{d15}\Rightarrow105x5+50xb=100xd+15\)
\(\Rightarrow100xd-50xb=510\Rightarrow10xd-5xb=51\)
Vế phải chia hết cho 5 vế trái không chia hết cho 5 nên c=5 loại
a/ Xét tg vuông ABH và tg vuông ADH có
AH chung
BH=HD (gt)
=> tg ABH = tg ADH (Hai tg vuông có 2 cạnh góc vuông = nhau)
=> AB = AD
b/
Ta có tg ABH = tg ADH \(\Rightarrow\widehat{BAH}=\widehat{DAH}\)
IE//AB \(\Rightarrow\widehat{BAH}=\widehat{DEH}\)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}\) => tg DAE cân tại D => AD = DE
Mà AB = AD (cmt)
=> AB = DE
IE//AB => DE//AB
=> ABED là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau là hình bình hành)
=> HA = HE (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
c/
Xét tg vuông ACH và tg vuông ECH có
CH chung
HA=HE (cmt)
=> tg ACH = tg ECH (Hai tg vuông có 2 cạnh góc vuông = nhau)
\(\Rightarrow\widehat{ACH}=\widehat{ECH}\) (1)
IE//AB \(\Rightarrow\widehat{IDC}=\widehat{ABH}\) (góc đồng vị)
\(\widehat{KDC}=\widehat{ADH}\) (góc đối đỉnh)
tg ABH = tg ADH \(\Rightarrow\widehat{ABH}=\widehat{ADH}\)
\(\Rightarrow\widehat{IDC}=\widehat{KDC}\) (2)
Xét tg IDC và tg KDC có DC chung (3)
Từ (1) (2) (3) => tg IDC = tg KDC => DI = DK
d/
Ta có
tg IDC = tg KDC (cmt) \(\Rightarrow CI=CK\) => tg CIK cân tại C
tg IDC = tg KDC (cmt) \(\Rightarrow\widehat{ICD}=\widehat{KDC}\) => CD là phân giác \(\widehat{ICK}\)
\(\Rightarrow CD\perp IK\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
\(\Rightarrow IK\perp BC\)
\(\dfrac{2}{15}=\dfrac{4}{30}>\dfrac{3}{20}\)
\(\Rightarrow\dfrac{-2}{15}=\dfrac{-4}{30}< \dfrac{3}{-20}\)
Nếu tổ 1 sửa thêm 12 m và tổ 2 sửa ít hơn 10 m số đường đã sửa thì
Tổng số m đường cả 2 tổ khi đó sửa là
138 +12 -10 = 140 m
Chia số m đường tổ 1 sửa khi đó thành 3 phần thì số m đường tổ 2 khi đó là 4 phần
Tổng số phần bằng nhau là
3+4=7 phần
Giá trị 1 phần là
140:7=20 m
Số m tổ 1 sửa là
20x3-12=48 m
Số m đường tổ 2 sửa là
138-48=90 m