

Trần Phương Anh
Giới thiệu về bản thân



































Từ giả thiết \(z \geq y \geq x \geq 0\) suy ra \(x \left(\right. x - y \left.\right) \left(\right. x - z \left.\right) \geq 0\) (1).
Hai số hạng còn lại của vế trái bất đẳng thức cần chứng minh có nhân tử chung \(z - y \geq 0\) (2)
và ta có \(y \left(\right. y - z \left.\right) \left(\right. y - x \left.\right) + z \left(\right. z - x \left.\right) \left(\right. z - y \left.\right) = \left(\right. z - y \left.\right) \left[\right. z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \left]\right.\) (3)
Mà \(z \geq y \geq x \geq 0\) nên \(z \geq y \geq 0\) và \(z - x \geq y - x \geq 0\), từ đó
\(z \left(\right. z - x \left.\right) \geq y \left(\right. y - x \left.\right)\) nên \(z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \geq 0\) (4)
Từ (2) và (4) suy ra \(\left(\right. z - y \left.\right) \left[\right. z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \left]\right. \geq 0\), kết hợp với (3) suy ra
\(y \left(\right. y - z \left.\right) \left(\right. y - x \left.\right) + z \left(\right. z - x \left.\right) \left(\right. z - y \left.\right) \geq 0\) (5).
Từ (1) và (5) suy ra điều phải chứng minh.