

Lê Quang Tiến
Giới thiệu về bản thân



































a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
a) ABCD là hình bình hành nên AD = BC và AD // BC. Mà E là trung điểm của AD nên AE = ED; F là trung điểm của BC nên BF = FC. Suy ra DE = BF. Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết). b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD. Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường. Mà O là trung điểm của BD nên O là trung điểm của EF. Vậy ba điểm E, O, F thẳng hàng.
Xét tam giác A B C ABC có hai đường trung tuyến B M BM và C N CN cắt nhau tại G G (giả thiết) nên G G là trọng tâm của Δ A B C ΔABC. Suy ra G M = G B 2 GM= 2 GB ; G N = G C 2 GN= 2 GC (tính chất trọng tâm của tam giác) (1) Mà P P là trung điểm của G B GB (giả thiết) nên G P = P B = G B 2 GP=PB= 2 GB (2) Q Q là trung điểm của G C GC (giả thiết) nên G Q = Q C = G C 2 GQ=QC= 2 GC (3) Từ (1), (2) và (3) suy ra G M = G P GM=GP và G N = G Q GN=GQ. Xét tứ giác P Q M N PQMN có: G M = G P GM=GP và G N = G Q GN=GQ (chứng minh trên) Do đó tứ giác P Q M N PQMN có hai đường chéo M P MP và N Q NQ cắt nhau tại trung điểm G G của mỗi đường nên là hình bình hành.