Nguyễn Viết Trọng

Giới thiệu về bản thân

Thành công không có dấu chân của những kẻ lười biếng.
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Bạn thử kiểm tra xem chỗ rùa ở có đủ ấm và khô ráo không nha, vì rùa yếu có thể do lạnh hoặc ẩm quá. Rùa cũng cần phơi nắng buổi sáng một chút để khỏe hơn nữa.

Bạn thử kiểm tra nhiệt độ nơi nuôi, cho rùa phơi nắng sáng nhẹ, và đảm bảo nước sạch. Nếu rùa bỏ ăn lâu, nên đưa đi khám thú y

Ta xét các cung và đường tròn đã cho:

  • Điểm E nằm trên đường tròn tâm A bán kính BC và trên cung tròn tâm C bán kính AB.
    Điều đó có nghĩa là: AE = BC và CE = AB.
  • Tương tự, điểm F nằm trên đường tròn tâm A bán kính BC và trên cung tròn tâm B bán kính AC.
    Suy ra: AF = BC và BF = AC.

Từ hai điều trên, ta có: AE = AF.
Do đó, A là trung điểm của đoạn thẳng EF.

Vì A là trung điểm của đoạn EF nên ba điểm F, A, E thẳng hàng.

Điều phải chứng minh.

a) \(16^{3} \cdot 2^{4}\)

Ta có:

  • \(16 = 2^{4}\)\(16^{3} = \left(\right. 2^{4} \left.\right)^{3} = 2^{12}\)

\(2^{12} \cdot 2^{4} = 2^{16}\)

Đáp án: \(2^{16}\)


b) \(\frac{36^{5}}{18^{5}}\)

Ta có:

  • \(36 = 2^{2} \cdot 3^{2}\), nên \(36^{5} = \left(\right. 2^{2} \cdot 3^{2} \left.\right)^{5} = 2^{10} \cdot 3^{10}\)
  • \(18 = 2 \cdot 3^{2}\), nên \(18^{5} = \left(\right. 2 \cdot 3^{2} \left.\right)^{5} = 2^{5} \cdot 3^{10}\)

\(\frac{2^{10} \cdot 3^{10}}{2^{5} \cdot 3^{10}} = 2^{10 - 5} = 2^{5}\)

Đáp án: \(2^{5}\)


c) \(5^{5} + 5^{2} \cdot 5^{3}\)

Ta có:

  • \(5^{2} \cdot 5^{3} = 5^{2 + 3} = 5^{5}\)

\(5^{5} + 5^{5} = 2 \cdot 5^{5}\)

Đáp án: \(2 \cdot 5^{5}\)


d) \(\frac{125^{4}}{5^{8}}\)

Ta có:

  • \(125 = 5^{3}\)\(125^{4} = \left(\right. 5^{3} \left.\right)^{4} = 5^{12}\)

\(\frac{5^{12}}{5^{8}} = 5^{12 - 8} = 5^{4}\)

Đáp án: \(5^{4}\)