

Kẻ Mạo Danh
Giới thiệu về bản thân



































Chihuahua
Ta có:
\(B\left(2\right)=\left\lbrace0;\pm2;\pm4;\pm6;\pm8;\ldots\right\rbrace\)
Mà x ∈ N*, x < 6
⇒ x ∈ {2; 4}
Vậy x ∈ {2; 4}
a) Ta có:
\(C=1+4+4^2+4^3+4^4+4^5+4^6\)
\(4C=\left(1+4+4^2+4^3+4^4+4^5+4^6\right)\cdot4\)
\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b)
\(\Rightarrow3C=4C-C=\left(4+4^2+4^3+4^4+4^5+4^6+4^7\right)-\left(1+4+4^2+4^3+4^4+4^5+4^6\right)\)
\(3C=4^7-1\)
Vì \(3C\vdots3\) nên \(4^7-1\vdots3\)
Vậy ....
a) Ta có:
\(A=1+3+3^2+3^3+3^4+3^5+3^6+3^7\)
\(3A=\left(1+3+3^2+3^3+3^4+3^5+3^6+3^7\right)\cdot3\)
\(3A=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)
b)
\(\Rightarrow2A=3A-A=\left(3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\right)-\left(1+3+3^2+3^3+3^4+3^5+3^6+3^7\right)\)
\(2A=3^8-1\)
Mà \(2A\vdots2\)
\(\Rightarrow3^8-1\vdots2\)
Vậy ...
SAO V BN?
Ta có:
\(A=1+2^1+2^2+\cdots+2^{2007}\)
\(2A=2+2^2+2^3+\cdots+2^{2008}\)
\(2A-A=\left(2+2^2+2^3+\cdots+2^{2008}\right)-\left(1+2^1+2^2+\cdots+2^{2007}\right)\)
\(A=2^{2008}-1\)
Vậy:
\(a)2A=2+2^2+2^3+\cdots+2^{2008}\)
\(b)A=2^{2008}-1\)
???????????????
\(\left(6-x\right)^3=\frac{-125}{8}\)
\(\left(6x-3\right)^3=\left(\frac{-5}{2}\right)^3\)
\(6x-3=\frac{-5}{2}\)
\(6x=\frac{-5}{2}+3\)
\(6x=\frac{-5}{2}+\frac62\)
\(6x=\frac12\)
\(x=\frac12:6\)
\(x=\frac12\cdot\frac16\)
\(x=\frac{1}{12}\)
Vậy \(x=\frac{1}{12}\)
\(\left(2-3x\right)^2=\frac94\)
\(\left(2-3x\right)^2=\left(\frac32\right)^2\)
\(\Rightarrow2-3x=\frac32\)
\(3x=2-\frac32\)
\(3x=\frac12\)
\(x=\frac12:3\)
\(x=\frac12\cdot\frac13\)
\(x=\frac16\)
Vậy \(x=\frac16\)