

Lê Song Phương
Giới thiệu về bản thân



































Bạn viết lại đề bài nhé, chứ nhìn vào mình không biết nó là \(\left(\dfrac{1}{3}\right)^{x^2}-2x-3=3^x+1\) hay \(\left(\dfrac{1}{3}\right)^{x^2-2x-3}=3^{x+1}\) hay cái gì khác nữa.
Số cách chọn 5 trong số 12 cuốn sách là \(C^5_{12}\)
Ta đi tính số cách chọn 5 trong 12 cuốn sách sao cho không có cả 3 loại sách trong số sách còn lại.
TH1: Chọn 5 quyển sách toán \(\Rightarrow\) Có 1 cách.
TH2: Chọn 4 quyển sách văn và 1 quyển sách khác \(\Rightarrow\) Có 8 cách.
TH3: Chọn 3 quyển sách anh và 2 quyển sách khác \(\Rightarrow\) Có \(C^2_9=36\) cách.
Vậy có tất cả \(1+8+36=45\) cách chọn 5 quyển sách sao cho trong số sách còn lại không chứa cả 3 loại sách.
\(\Rightarrow\) Có \(C^5_{12}-45=747\) cách chọn thỏa mãn ycbt.
Bạn vào trang cá nhân của mình xem trả lời nhé, tại bài của mình có hình nên nó chưa duyệt.
a) Ta có \(AB^2=\left[\left(-3\right)-\left(-1\right)\right]^2+\left(5-3\right)^2=8\)
Do đó pt đường tròn \(\left(A,AB\right):\left(x+1\right)^2+\left(y-3\right)^2=8\)
b) Pt đường thẳng AB có dạng:
\(AB:\dfrac{y-3}{5-3}=\dfrac{x+1}{-3+1}\)
\(\Leftrightarrow\dfrac{y-3}{2}=\dfrac{x+1}{-2}\)
\(\Leftrightarrow y-3=-x-1\)
\(\Leftrightarrow x+y-2=0\)
a) \(n\left(\Omega\right)=48\)
Gọi A là biến cố: "Bạn được chọn thích bóng chuyền hoặc bóng bàn."
Áp dụng công thức bù trừ, ta có:
\(n\left(A\right)=19+13-8=24\)
\(\Rightarrow P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{24}{48}=\dfrac{1}{2}\)
b) Xác suất là \(1-\dfrac{1}{2}=\dfrac{1}{2}\)
Bạn xem lại đề xem là \(0,5.10^9C\) hay là \(0,5.10^{-9}C\) nhé. Thường người ta không cho 2 điện tích độ lớn khủng bố mà lại đặt cách nhau có vài cm như thế đâu.
1) Gọi các số thỏa mãn là \(\overline{abcdef}\)
Số cách chọn vị trí của 3 chữ số 2 là \(C^3_6\)
Số cách chọn vị trí của 2 chữ số 1 là \(C^2_3\)
Số cách chọn 2 chữ số còn lại: \(4^2\)
\(\Rightarrow\) Có tất cả \(C^3_6.C^2_3.4^2=960\) số thỏa ycbt
2) Tập con X bất kì của A muốn thỏa mãn ycbt thì đk cần là phải có ít nhất 1 và nhiều nhất 7 phần tử.
TH1: \(X=\left\{2\right\}\) -> Có 1 tập X
TH2: \(X=\left\{2;a_1\right\}\) -> Có \(C^1_6\) tập X
TH3: \(X=\left\{2;a_1;a_2\right\}\) -> Có \(C^2_6\) tập X
...
TH7: \(X=\left\{2;a_1;...;a_6\right\}\) -> Có \(C^6_6\) tập X
\(\Rightarrow\) Có tất cả \(1+C^1_6+C^2_6+...+C^6_6=2^6=32\) tập hợp thỏa ycbt.
3) Gọi số thỏa mãn ycbt là \(\overline{abcde}\)
Số cách chọn 2 vị trí của 2 chữ số lẻ liền nhau là 3 cách.
TH1: \(a,b\) lẻ thì có \(P^2_3=6\) cách chọn cặp \(\left(a;b\right)\), bộ \(\left(c;d;e\right)\) có \(P^3_4=24\) cách chọn => Có \(6.24=144\) số
TH2: \(b,c\) lẻ thì cũng có \(P^2_3=6\) cách chọn cặp \(\left(b;c\right)\), còn bộ \(\left(a;d;e\right)\) có \(3.3.2=18\) cách chọn => Có \(6.18=108\) số
TH3: \(c,d\) lẻ thì tương tự TH2, có 108 số.
\(\Rightarrow\) Có tất cả \(144+108+108=360\) số thỏa mãn ycbt.
Mình gửi đáp án rồi đó nhưng vì có hình nên nó chưa duyệt lên được. Bạn vào trang cá nhân của mình xem nhé.