Nguyễn Khánh Ngọc

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Khánh Ngọc
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) ΔABC vuông cân nên B^=C^=45∘.

ΔBHE vuông tại H có BEH^+B^=90∘

Suy ra BEH^=90∘−45∘=45∘ nên B^=BEH^=45∘.

Vậy ΔBEH vuông cân tại H.

b) Chứng minh tương tự câu a ta được ΔCFGvuông cân tại G nên GF=GC và HB=HE

Mặt khác BH=HG=GC suy ra EH=HG=GF và EH // FG (cùng vuông góc với BC)

Tứ giác EFGH có EH // FG,EH=FGnên là hình bình hành.

Hình bình hành EFGH có một góc vuông H^ nên là hình chữ nhật

Hình chữ nhật EFGH có hai cạnh kề bằng nhau EH=HG nên là hình vuông.

loading...

Tứ giác OBAC có ba góc vuông B^=C^=BOC^=90∘

Nên OBAC là hình chữ nhật.

Mà A nằm trên tia phân giác OM suy ra AB=AC.

Khi đó OBAC là hình vuông.