

Phạm Quang Lộc
Giới thiệu về bản thân



































$0,25:5=25:100:5=25:5:100=5:100=0,05$
Bài giải
Lớp $4A$ trồng được là:
$(568+36):2=302$(cây)
Lớ $4B$ trồng được là:
$568-302=266$(cây)
Đ/s: Lớp $4A$: $302$ cây; Lớp $4B$: $266$ cây
Sửa dòng cuối chỗ ''Vì phần mẫu của \(A< B\)'' thành ''Vì phần mẫu của \(\dfrac{1998}{1999^{1999}+1999}< \dfrac{1998}{1999^{2000}+1999}\)'' nhé.
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\)
\(\dfrac{1}{1999}A=\dfrac{1999^{1999}+1}{1999^{1999}+1999}\)
\(\dfrac{1}{1999}A=\dfrac{1999^{1999}}{1999^{1999}}-\dfrac{1998}{1999^{1999}+1999}\)
\(\dfrac{1}{1999}A=1-\dfrac{1998}{1999^{1999}+1999}\)
\(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
\(\dfrac{1}{1999}B=\dfrac{1999^{2000}+1}{1999^{2000}+1999}\)
\(\dfrac{1}{1999}B=\dfrac{1999^{2000}}{1999^{2000}}-\dfrac{1998}{1999^{2000}+1999}\)
\(\dfrac{1}{1999}B=1-\dfrac{1998}{1999^{2000}+1999}\)
Vì \(\dfrac{1998}{1999^{1999}+1999}>\dfrac{1998}{1999^{2000}+1999}=>\dfrac{1}{1999}A< \dfrac{1}{1999}B=>A< B\)
\(1-\left(-x+\dfrac{9}{5}\right)=\dfrac{5}{6}+\left(-\dfrac{7}{12}\right)\)
\(=>1-\left(-x+\dfrac{9}{5}\right)=\dfrac{1}{4}\)
\(=>-x+\dfrac{9}{5}=1-\dfrac{1}{4}\)
\(=>-x+\dfrac{9}{5}=\dfrac{3}{4}\)
\(=>-x=\dfrac{3}{4}-\dfrac{9}{5}\)
\(=>-x=-\dfrac{21}{20}\)
\(=>x=\dfrac{21}{20}\)
Độ dài cạnh đáy là:
$10,2\times2:4=5,1(cm)$
Vì không có đáp án nào đúng nên ta không chọn đáp án nào cả.
Bài giải
Ta có sơ đồ như sau:
Số bé: $2$ phần
Số lớn: $3$ phần
Theo sơ đồ, tổng số phần bằng nhau là:
$2+3=5$(phần)
Số bé là:
$60:5\times2=24$
Số lớn là:
$60-24=36$
Vậy ta chọn đáp án $A$
Vì có dãy trên có nhân với số có tận cùng là $0$ như $10$ thì ta nhận ra rằng số đó luôn chia hết cho $2$ và $5$
Ta có một số mà nhân với số chia hết cho $3$ như $9$. VD: $2$ chia hết cho $9$; $2\times9$ thì chia hết cho $3$. Vậy dãy trên cũng chia hết cho $3$
Vậy ta chọn đáp án $D$
a, $5^{3} =5\times5\times5=125$
$3^{5} =3\times3\times3=27$
$125>27=>5^{3}>3^{5}$
$3^{2}=3\times3=9$
$2^{3}=2\times2\times2=8$
$9>8=>3^{2}>2^{3}$
$2^{6} =2\times2\times2\times2\times2\times2=64$
$6^{2}=6\times6=36$
$64>36=>2^{6}>6^{2}$
b, $2015\times2017=2015\times(2016+1)=2015\times2016+2015$
$2016^{2}=2016\times2016=2016\times(2015+1)=2016\times2015+2016$
$2015\times2016+2015<2016\times2015+2016=>2015\times2017<2016^{2}$
c, $199^{20}=199^{4\times5}=(199^{4})^{5}= 1568239201^{5}$
$2003^{15}=2003^{3\times5}=(2003^{3})^5 =8036054027^{5}$
$1568239201<8036054027=>199^{20}<2003^{15}$
d, $3^99 =3^{3\times33}=(3^{3})^{33}=27^{33}>27^{21}$
$11^{21}<27^{21}=>3^{99}>11^{21}$
$3^{2n}=9^n$
$2^{3n}=8^n$
$9>8=>3^{2n}>2^{3n}$
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)