Toru

Giới thiệu về bản thân

Từ bên hoc24 sang. Mong mọi người giúp đỡ!
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có: \(3-y=2\left(x-1\right)^2\) (*) và  \(2\left(x-1\right)^2\ge0\forall x\)

nên \(3-y\ge0\Rightarrow y\le3\)

\(\Rightarrow y\in\left\{0;1;2;3\right\}\) (vì y là số tự nhiên) (1)

Mặt khác: \(2\left(x-1\right)^2\) là số chẵn với mọi x tự nhiên

\(\Rightarrow3-y\) chẵn \(\Rightarrow y\) lẻ (2)

Từ (1) và (2) \(\Rightarrow y\in\left\{1;3\right\}\)

+, Với \(y=1\) thì (*) thành: \(3-1=2\left(x-1\right)^2\)

\(\Rightarrow2\left(x-1\right)^2=2\)

\(\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

+, Với \(y=3\) thì (*) thành: \(3-3=2\left(x-1\right)^2\)

\(\Rightarrow2\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\left(tm\right)\)

Vậy \(\left(x;y\right)\in\left\{\left(1;3\right);\left(2;1\right);\left(0;1\right)\right\}\) là các cặp giá trị cần tìm.

\(\dfrac{3}{9}=\dfrac{3:3}{9:3}=\dfrac{1}{3}\)

\(\dfrac{27}{45}=\dfrac{27:9}{45:9}=\dfrac{3}{5}\)

\(\dfrac{18}{36}=\dfrac{18:18}{36:18}=\dfrac{1}{2}\)

\(\dfrac{9}{27}=\dfrac{9:9}{27:9}=\dfrac{1}{3}\)

\(\dfrac{8}{24}=\dfrac{8:8}{24:8}=\dfrac{1}{3}\)

\(\dfrac{110}{220}=\dfrac{110:110}{220:110}=\dfrac{1}{2}\)

Thực hiện phép chia \(a\left(x\right)=x^3+2x^2+3x-1\) cho \(b\left(x\right)=x-2\), ta được:

\(a\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+r\)

\(\Rightarrow a\left(2\right)=\left(2-2\right)\cdot Q\left(2\right)+r=r\)

\(\Rightarrow r=2^3+2\cdot2^2+3\cdot2-1=21\)

Vậy số dư phép chia \(a\left(x\right)\) cho \(b\left(x\right)\) là \(21\).

\(7^{2x-6}=49\)

\(\Rightarrow7^{2x-6}=7^2\)

\(\Rightarrow2x-6=2\)

\(\Rightarrow2x=2+6\)

\(\Rightarrow2x=8\)

\(\Rightarrow x=8:2=4\)

Ta thấy: \(\left(x-y+3\right)^2\ge0\forall x;y\)

              \(\left|y-3\right|\ge0\forall y\)

\(\Rightarrow\left(x-y+3\right)^2+\left|y-3\right|\ge0\forall x;y\)

Mặt khác: \(\left(x-y+3\right)^2+\left|y-3\right|\le0\)

\(\Rightarrow\left(x-y+3\right)^2+\left|y-3\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+3\right)^2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+3=0\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3+3=0\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

Khi đó, biểu thức \(\left(x-2y+6\right)^{10}+27\) trở thành:

\(\left(0-2\cdot3+6\right)^{10}+27\)

\(=\left(-6+6\right)^{10}+27\)

\(=27\)

#Urushi