

Kiều Vũ Linh
Giới thiệu về bản thân



































Hai lần tuổi của em:
18 - 6 = 12 (tuổi)
Số tuổi của em:
12 : 2 = 6 (tuổi)
n² + n + 9 = n(n + 1) + 9
Để (n² + n + 9) ⋮ (n + 1) thì 9 ⋮ (n + 1)
⇒ n + 1 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}
⇒ n ∈ {-10; -4; -2; 0; 2; 8}
Cả ba con nặng:
(4,5 + 5,2 + 6,3) : 2 = 8 (kg)
2n + 3 = 2n - 2 + 5
= 2(n - 1) + 5
Để (2n + 3) ⋮ (n - 1) thì 5 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ n ∈ {-4; 0; 2; 6}
Mà n T ℕ
⇒ n ∈ {0; 2; 6}
Do a chia 3; 5; 7 đều dư 2 nên a - 2 ∈ BC(3; 5; 7)
Ta có:
3 = 3
5 = 5
7 = 7
⇒ BCNN(3; 5; 7) = 3.5.7 = 105
⇒ a - 2 ∈ BC(3; 5; 7) = B(105) = {0; 105; 210; 315; 420; 525; 630; 735; 840; 945; 1050; ...}
⇒ a ∈ {2; 107; 212; 317; 422; 527; 632; 737; 842; 947; 1052; ...}
Mà a là số nhỏ nhất có bốn chữ số nên a = 1052
3 MB = 3 . 1024 = 3072 KB
Bổ sung câu d vì bấm nhầm nút "Gửi trả lời"
\(\Rightarrow4^{2007}-1\) có chữ số tận cùng là 3
Lại có: \(E\) là số tự nhiên
\(\Rightarrow\left(4^{2007}-1\right)⋮3\)
\(\Rightarrow\dfrac{4^{2007}-1}{3}\) có chữ số tận cùng là 1
\(\Rightarrow\dfrac{4^{2007}-1}{3}.25\) có hai chữ số tận cùng là 25
\(\Rightarrow D=75+\dfrac{4^{2007}-1}{3}.25\) có hai chữ số tận cùng là 00
\(\Rightarrow D⋮100\)
d) Đặt \(D=75+\left(4^{2006}+4^{2005}+4^{2004}+...+1\right).25\)
Đặt \(E=4^{2006}+4^{2005}+4^{2004}+...+1\)
\(\Rightarrow4E=4^{2007}+4^{2006}+4^{2005}+...+4\)
\(\Rightarrow3E=4E-E\)
\(=\left(4^{2007}+4^{2006}+4^{2005}+...+4\right)-\left(4^{2006}+4^{2005}+4^{2004}+...+1\right)\)
\(=4^{2007}-1\)
\(\Rightarrow E=\dfrac{\left(4^{2007}-1\right)}{3}\)
\(\Rightarrow D=75+\dfrac{4^{2007}-1}{3}.25\)
Ta có:
\(4^{2007}=\left(4^2\right)^{1003}.4\)
\(4^2\equiv6\left(mod10\right)\)
\(\left(4^2\right)^{1003}\equiv6^{1003}\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow4^{2007}\equiv\left(4^2\right)^{1003}.4\left(mod10\right)\equiv6.4\left(mod10\right)\equiv4\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(4^{2007}\) là 4
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)
a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)