K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2

Do \(MNPQ\) là hình bình hành (gt)

\(\Rightarrow MN=PQ\)

Mà \(QI=\dfrac{1}{3}PQ\left(gt\right)\)

\(\Rightarrow QI=\dfrac{1}{3}MN\)

\(\Rightarrow\dfrac{QI}{MN}=\dfrac{1}{3}\)

Do \(MNPQ\) là hình bình hành (gt)

\(\Rightarrow MN\) // \(PQ\)

\(\Rightarrow MN\) // \(QI\)

\(\Rightarrow\dfrac{QI}{MN}=\dfrac{QE}{EN}=\dfrac{1}{3}\)

\(\dfrac{QE}{EN}=\dfrac{1}{3}\Rightarrow EN=3QE\)

Mà \(EN+QE=NQ=18\left(cm\right)\)

\(\Rightarrow3QE+QE=18\)

\(\Rightarrow4QE=18\)

\(\Rightarrow QE=\dfrac{18}{4}=4,5\left(cm\right)\)

a: Vẽ đồ thị:

loading...

b: Tọa độ giao điểm của (d1) với trục Ox là:

\(\left\{{}\begin{matrix}y=0\\23x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\23x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{2}{23}\end{matrix}\right.\)

Tọa độ giao điểm của (d1) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=23x+2=23\cdot0+2=2\end{matrix}\right.\)

c: Phương trình hoành độ giao điểm là:

23x+2=2x+2

=>23x-2x=0

=>21x=0

=>x=0

Khi x=0 thì \(y=2x+2=2\cdot0+2=2\)

Vậy: (d1) cắt (d2) tại A(0;2)

10 tháng 2

`(-x^2 + x)/(-2x^2 + 3x - 1) ` `(đkxđ: x ne 1/2; x ne 1)`

`= (x^2 - x)/(2x^2 - 3x + 1) `

`= (x(x-1))/((x-1)(2x - 1))`

`= x/(2x -1)`

\(\dfrac{-x^2+x}{-2x^2+3x-1}\)

\(=\dfrac{x^2-x}{2x^2-3x+1}\)

\(=\dfrac{x\left(x-1\right)}{\left(2x-1\right)\left(x-1\right)}=\dfrac{x}{2x-1}\)

9 tháng 2

Chúng ta cần tìm giá trị lớn nhất và giá trị nhỏ nhất của hai hàm số đã chọn. ### **Câu a: \( F = \frac{2x + 3}{x^2 + 4} \)** #### **Bước 1: Tìm đạo hàm của \( F \)** Gọi: \[ F(x) = \frac{2x + 3}{x^2 + 4} \] Đạo hàm của \( F(x) \) theo quy tắc kinh tế: \[ F'(x) = \frac{(2)(x^2+4) - (2x+3)(2x)}{(x^2+4)^2} \] \[ = \frac{2x^2 + 8 - (4x^2 + 6x)}{(x^2+4)^2} \] \[ = \frac{-2x^2 - 6x + 8}{(x^2+4)^2} \] #### **Bước 2: Tìm các điểm cực trị** Phương pháp giải thích: \[ -2x^2 - 6x + 8 = 0 \] Chia hai vế cho -2: \[ x^2 + 3x - 4 = 0 \] \[ (x + 4)(x - 1) = 0 \] \[ x = -4, x = 1 \] #### **Bước 3: chắc hạn tại \( x \to \pm\infty \)** \[ \lim_{x \to \pm\infty} F(x) = 0 \] #### **Bước 4: Tính giá trị của \( F(x) \) tại các cực trị và một số điểm đặc biệt**### **Câu a: Tìm giá trị lớn nhất, nhỏ nhất của \( F = \frac{2x + 3}{x^2 + 4} \)** #### **Bước 1: Tìm đạo hàm của \( F(x) \)** Sử dụng quy tắc đạo hàm của một phân thức: \[ F(x) = \frac{2x + 3}{x^2 + 4} \] áp dụng công thức: \[ F'(x) = \frac{(2)(x^2 + 4) - (2x + 3)(2x)}{(x^2 + 4)^2} \] \[ = \frac{2x^2 + 8 - (4x^2 + 6x)}{(x^2 + 4)^2} \] \[ = \frac{-2x^2 - 6x + 8}{(x^2 + 4)^2} \] #### **Bước 2: Tìm các cực trị** Giải thích phương trình \( F'(x) = 0 \): \[ -2x^2 - 6x + 8 = 0 \] Chia hai vế cho -2: \[ x^2 + 3x - 4 = 0 \] Phân tích thành nhân tử: \[ (x + 4)(x - 1) = 0 \] \[ x = -4, x = 1 \] #### **Bước 3: dừng giới hạn tại \( x \to \pm\infty \)** \[ \lim_{x \to \pm\infty} F(x) = 0 \] Do đó đồ thị có đỉnh ngang là \( y = 0 \). #### **Bước 4: Tính giá trị của \( F(x) \) tại các cực trị** \[ F(-4) =

5 tháng 2

Olm chào em, em xem hướng dẫn chi tiết dưới đây em sẽ hiểu vì sao em nhé.

Giải:

\(x^2\) - 5\(x\) + 6

= (\(x^2\) - 3\(x\)) - (2\(x-6\))

= \(x\left(x-3\right)-2\left(x-3\right)\)

= (\(x-3\))(\(x-2\))

1: Để (d) cắt (d') tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}a\ne a'\\b=b'\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne m-2\\m-1=-2m\end{matrix}\right.\Leftrightarrow3m=1\)

=>\(m=\dfrac{1}{3}\)

2: Thay x=2 vào y=mx+m-1, ta được:

\(y=m\cdot2+m-1=3m-1\)

Thay x=2 và y=3m-1 vào (d'), ta được:

\(2\left(m-2\right)-2m=3m-1\)

=>3m-1=-4

=>3m=-3

=>m=-1

3: Thay x=-1 và y=2 vào (d), ta được:

\(m\cdot\left(-1\right)+m-1=2\)

=>-m+m-1=2

=>-1=2(vô lý)

vậy: \(m\in\varnothing\)

24 tháng 1

6 tháng 1

Giải:

Số trái cây sầu riêng cửa hàng đã bán được là:

400 x 20 : 100 = 80 (kg)

Kết luận số trái cây sầu riêng cửa hàng đã bán là 80 kg.





5 tháng 1

Các tỉ số theo định lí Thales là:

1; \(\frac{BD}{BA}\) = \(\frac{BE}{AC}\)

2; \(\frac{BD}{DA}\) = \(\frac{BE}{EC}\)

3; \(\frac{DA}{BA}\) = \(\frac{EC}{BC}\)


5 tháng 1