Tính GTLN A=-x^2-6x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(x^3-3x^2+3x-2=0\)
=>\(x^3-3x^2+3x-1-1=0\)
=>\(\left(x-1\right)^3=1\)
=>x-1=1
=>x=2

Ta có: \(8x^3+36x^2+54x+27=0\)
=>\(\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3=0\)
=>\(\left(2x+3\right)^3=0\)
=>2x+3=0
=>2x=-3
=>\(x=-\frac32\)
8x^3 + 36x^2 + 54x + 27 = 0
→ (2x)^3 + 3(2x)^2 * 3 + 3(2x) * 3^2 + 3^3 = 0
→ (2x + 3)^3 = 0
→ 2x + 3 = 0
→ x = -3/2
Vậy x = -3/2.

Ta có: \(x^3-3x^2+3x-1=\left(3x+5\right)^3\)
=>\(\left(x-1\right)^3=\left(3x+5\right)^3\)
=>3x+5=x-1
=>3x-x=-1-5
=>2x=-6
=>x=-3
x^3 - 3x^2 + 3x - 1 = (3x + 5)^3
→ (x - 1)^3 = (3x + 5)^3
→ x - 1 = 3x + 5
→ -2x = 6
→ x = -3
Vậy x = -3.

Ta có: \(x^3-6x^2+12x-8=\left(2x+1\right)^3\)
=>\(\left(x-2\right)^3=\left(2x+1\right)^3\)
=>2x+1=x-2
=>2x-x=-2-1
=>x=-3
x^3 - 6x^2 + 12x - 8 = (2x + 1)^3
→ (x - 2)^3 = (2x + 1)^3
→ x - 2 = 2x + 1
→ -x = 3
→ x = -3
Vậy x = -3.

\(x^2-2x-120=0\)
=>\(x^2-12x+10x-120=0\)
=>x(x-12)+10(x-12)=0
=>(x-12)(x+10)=0
=>\(\left[\begin{array}{l}x-12=0\\ x+10=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=12\\ x=-10\end{array}\right.\)

a: \(\left(2x-1\right)^2-x\left(4x-3\right)\)
\(=4x^2-4x+1-4x^2+3x\)
=-x+1
b: \(\left(x-2\right)\left(x-1\right)-\left(x-3\right)^2\)
\(=x^2-3x+2-\left(x^2-6x+9\right)\)
\(=x^2-3x+2-x^2+6x-9=3x-7\)
c: \(\left(x-2\right)^3-x\left(x-1\right)\left(x-2\right)\)
\(=x^3-6x^2+12x-8-x\left(x^2-3x+2\right)\)
\(=x^3-6x^2+12x-8-x^3+3x^2-2x\)
\(=-3x^2+10x-8\)
d: \(\frac12x\left(x-2\right)-\left(2x-3\right)^2\)
\(=\frac12x^2-x-\left(4x^2-12x+9\right)\)
\(=\frac12x^2-x-4x^2+12x-9=-\frac72x^2+11x-9\)

Giải:
\(x+x\) + 133\(^0\) + 85\(^0\) = 360\(^0\)
2\(x\) + (133\(^0\) + 85\(^0\)) = 360\(^0\) (tống bốn góc của tứ giác luôn bằng 360\(^0\))
2\(x\) + 218\(^0\) = 360\(^0\)
2\(x\) = 360\(^0\) - 218\(^0\)
2\(x\) = 142\(^0\)
\(x\) = 142\(^0\) : 2
\(x\) = 71\(^0\)
xét tứ giác `KJVT` có :
\(\hat{K}+\hat{J}+\hat{V}+\hat{T}=360^0\)
`=> 133^0 + 85^0 + x + x = 360^0`
`=> 218^0 + 2x = 360^0`
`=> 2x =360^0 - 218^0`
`=> 2x = 142^0`
`=> x = 142^0 : 2`
`=> x = 71^0`
Vậy `x = 71^0`

(-7\(x^2\).2y\(^4\).z\(^3\)) + 20\(x^2\).y\(^4\).z\(^3\)
= (-7 + 20)\(x^2y^4z^3\)
= 13\(x^2y^4z^3\)

a; -(3 - 2\(x\)).(\(x+1\))
= - 3.(\(x+1\)) + 2\(x\).(\(x+1\))
= -3\(x\) - 3 + 2\(x^2\) + 2\(x\)
= -(\(3x\) - 2\(x\)) - 3 + 2\(x^2\)
= -\(x\) - 3 + 2\(x^2\)
= 2\(x^2\) - \(x\) - 3
b; 2\(x\).(3 - \(x\)) - (\(x+1)^2\)
= 6\(x\) - 2\(x^2\) - (\(x^2\) + 2\(x\) + 1)
= 6\(x\) - 2\(x^2\) - \(x^2\) - 2\(x\) - 1
= (6\(x\) - 2\(x\)) - (2\(x^2\) + \(x^2\)) - 1
= 4\(x\) - 3\(x^2\) - 1
= - 3\(x^2\) + 4\(x\) - 1
c; (\(x+4\))(2 - \(x\)) - (\(x^2\) - 2)
= \(x\).(2 - \(x\)) + 4.(2 - \(x\)) - \(x^2\) + 2
= 2\(x\) - \(x^2\) + 8 - 4\(x\) - \(x^2\) + 2
= -(4\(x\) - 2\(x\)) - (\(x^2\) + \(x^2\)) + (8 + 2)
= - 2\(x\) - 2\(x^2\) + 10
= - \(2x\) - 2\(x^2\) + 10
= - 2\(x^2\) - 2\(x\) + 10
d; - 2.(\(x-1\)).3\(x\) - 3\(x\).(\(x+2\))
= - 6\(x^2\) + 6\(x\) - 3\(x^2\) - 6\(x\)
= - (6\(x^2\) + 3\(x^2\)) + (6\(x-6x\))
= - 9\(x^2\) + 0
= -9\(x^2\)
A = -x^2 - 6x + 1
= -(x^2 + 6x + 9) + 10
= -(x + 3)^2 + 10 ≤ 10
GTLN của A là 10 khi x = -3.
Ta có: \(A=-x^2-6x+1\)
\(=-\left(x^2+6x-1\right)\)
\(=-\left(x^2+6x+9-10\right)\)
\(=-\left(x+3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi x+3=0
=>x=-3