Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề số 2 (cấu trúc mới) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số f(x)={x+x−2,khix≥21−3x,khix<2. Giá trị f(1) bằng
Đồ thị hàm số nào sau đây là parabol có tọa độ điểm đỉnh I(−1;2)?
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x)=−x2+6x−9?




Một thùng trong đó có 19 hộp đựng bút màu đỏ, 15 hộp đựng bút màu xanh. Số cách khác nhau để chọn được đồng thời một hộp màu đỏ, một hộp màu xanh là
Trong khai triển (2x+1)5 hệ số của số hạng chứa x5 là
Trong mặt phẳng Oxy, côsin góc giữa hai đường thẳng Δ1:3x+4y+1=0 và Δ2:{x=15+12ty=1+5t bằng
Trong mặt phẳng tọa độ Oxy, tâm I và bán kính R của đường tròn(C):x2+y2−2x+6y−8=0 là
Cho đường tròn (C):(x+3)2+(y−2)2=8. Phương trình tiếp tuyến của (C) tại điểm M(−1;4) là
Parabol (P):y2=8x có tiêu điểm
Gieo 1 đồng tiền và 1 con xúc xắc. Số phần tử của không gian mẫu là
Tập nghiệm của bất phương trình x2+2≤x−1 là
Một tứi đựng 3 viên bi xanh, 4 viên bi đỏ, 5 viên bi vàng và 6 viên bi trắng. Lấy ngẫu nhiên 1 viên bi từ túi, xác suất sao cho viên bi lấy được có màu xanh hoặc màu trắng bằng
Cho elip có phương trình chính tắc 25x2+9y2=1.
(Nhấp vào dòng để chọn đúng / sai)Elip có tiêu cự bằng 8. |
|
Elip có tiêu điểm F1(−4;0). |
|
Điểm A(5;3) thuộc đường elip. |
|
MF1+MF2=12, với M là một điểm thuộc đường elip. |
|
Cho đường tròn (C):x2+y2−2y−8=0.
(Nhấp vào dòng để chọn đúng / sai)Tâm của đường tròn (C) là điểm I(0;1). |
|
Điểm A(1;0) nằm trên đường tròn. |
|
Tâm đường tròn (C) cách trục Oy một khoảng bằng 2. |
|
Khi đường thẳng Δ:x+my−2=0 cắt đường tròn (C) theo dây cung có độ dài bằng 6 thì giá trị m=2. |
|
Cho tập S={0;1;2;3;4}.
(Nhấp vào dòng để chọn đúng / sai)a) Lập được 96 số có 4 chữ số khác nhau từ S. |
|
b) Lập đươc 60 số có 4 chữ số khác nhau sao cho số đó là số chẵn. |
|
c) Lập được 432 số có 5 chữ số sao cho chữ số 1 luôn có mặt và chữ số 0 có mặt 2 lần. |
|
d) Lập được 20 số có 3 chữ số khác nhau sao cho số đó nhỏ hơn 421 và chia hết cho 3. |
|
Trong một hộp có 40 cái thẻ được đánh số từ 1 đến 40. Rút ngẫu nhiên đồng thời 3 chiếc thẻ từ hộp.
(Nhấp vào dòng để chọn đúng / sai)Số phần tử của không gian mẫu của phép thử trên là n(Ω)=9880. |
|
Xác suất để rút được 3 chiếc thẻ đều ghi số lẻ bằng 263. |
|
Xác suất để rút được 3 chiếc thẻ trong đó có ít nhất một thẻ ghi số chẵn bằng 135. |
|
Xác suất để tổng ba số trên ba thẻ rút được là số chia hết cho 3 bằng380127. |
|
Trong một dịp quay xổ số, có ba loại giải thưởng: 1 000 000 đồng, 500 000 đồng, 100 000 đồng. Nơi bán có 100 tờ vé số, trong đó có 1 vé trúng thưởng 1 000 000 đồng, 5 vé trúng thưởng 500 000 đồng, 10 vé trúng thưởng 100 000 đồng. Một người mua ngẫu nhiên 3 vé. Tính xác suất của biến cố "Người mua đó trúng thưởng ít nhất 300 000 đồng". (Làm tròn kết quả tới chữ số thập phân thứ ba)
Trả lời:
Cho hai đường thẳng Δ1 và Δ2 vuông góc với nhau. Một chất điểm chuyển động trong một góc vuông tạo bởi Δ1 và Δ2 có tính chất: ở mọi thời điểm, tích khoảng cách từ mỗi vị trí của chất điểm đến hai đường thẳng Δ1 và Δ2 luôn bằng 4.
Biết rằng chất điểm chuyển động trên một phần của đường hypebol có phương trình dạng mx2−ny2=1. Tính m−n.
Trả lời:
Cho elip (E):9x2+1y2=1. Có bao nhiêu điểm M thuộc (E) sao cho nó nhìn hai tiêu điểm của (E) dưới một góc vuông?
Trả lời:
Tính tổng bán kính của các đường tròn đi qua A(1;1) và tiếp xúc với hai trục tọa độ.
Trả lời:
Một người có 500 triệu đồng gửi tiết kiệm ngân hàng với lãi suất 7,2%/năm. Với giả thiết sau mỗi tháng người đó không rút tiền thì số tiền lãi được nhập vào số tiền ban đầu. Đây được gọi là hình thức lãi kép. Biết số tiền cả vốn lẫn lãi T sau n tháng được tính bởi công thức T=T0(1+r)n, trong đó T0 là số tiền gửi lúc đầu và r là lãi suất của một tháng. Dùng tổng hai số hạng đầu tiên trong khai triển của nhị thức Newton, tính gần đúng số tiền người đó nhận được (cả gốc lẫn lãi) sau 6 tháng.
Trả lời: triệu đồng.
Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất?
Trả lời: triệu đồng