Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Mệnh đề phủ định của "Hà Nội là thủ đô của nước Việt Nam" là
Cho tập hợp A={1;2;3;4},B={0;2;4}, C={0;1;2;3;4;5}. Quan hệ nào sau đây đúng?
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Cặp số nào sau đây là nghiệm của bất phương trình 5x−2y<3?
Parabol (P):y=3x2−2x+1 có đỉnh là
Giá trị của biểu thức A=sin215∘+sin275∘+cos120∘ là
Cho tam giác ABC có AB=3, BC=5 và độ dài đường trung tuyến BM=13.
Độ dài AC bằng
Công thức nào sau đây đúng?
Trong các câu sau, có bao nhiêu câu là mệnh đề chứa biến và không phải mệnh đề?
i) "2x+1 là số lẻ, (x là số tự nhiên)".
ii) "x+1=0".
iii) "x−2y>0".
iv) "(x+y)2 là số chính phương, (x,y là số tự nhiên khác 0)".
Cho hai tập hợp A=(0;3) và B=[a;a+2]. Với giá trị nào sau đây của a thì A∩B=∅?
Phần tô màu (không bao gồm đường thẳng Δ) trong hình vẽ là miền nghiệm của bất phương trình nào sau đây?
Phần không tô màu trong hình vẽ dưới đây (không tính biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
Cho ba tập hợp CRM=(−∞;3),CRN=(−∞;−3)∪(3;+∞) và CRP=(−2;3].
(Nhấp vào ô màu vàng để chọn đúng / sai)a) N=(−3;3). |
|
b) P=(−∞;−2]∪(3;+∞). |
|
c) M∩N=∅. |
|
d) (M∩N)∪P=(−∞;−2]∪[3;+∞). |
|
Cho A là tập hợp các học sinh lớp 10 đang học ở trường X và B là tập hợp các học sinh đang học môn Tiếng Anh của trường X.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A∩B là tập hợp các học sinh lớp 10 học môn Tiếng Anh ở trường X. |
|
b) A\B là tập hợp những học sinh lớp 10 và không học Tiếng Anh ở trường X. |
|
c) A∪B là tập hợp các học sinh lớp 10 và học sinh học môn Tiếng Anh ở trường X. |
|
d) B\A là tập hợp các học sinh học lớp 10 ở trường X nhưng không học môn Tiếng Anh. |
|
Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là X và Y. Mỗi gói thực phẩm X chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin B. Mỗi gói thực phẩm Y chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin B. Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin B. Mỗi ngày không được dùng quá 12 gói mỗi loại.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hệ bất phương mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B là ⎩⎨⎧x+y≥122x+y≥16x+2y≥140≤x≤120≤y≤12. |
|
b) Điểm (10;8) không thuộc miền nghiệm của hệ bất phương trình mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B. |
|
c) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm X và thực phẩm Y mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin B là một ngũ giác. |
|
d) Biết 1 gói thực phẩm loại X giá 20000 đồng, 1 gói thực phẩm loại Y giá 25 000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại X và 2 gói thực phẩm loại Y để chi phí mua là ít nhất. |
|
Cho cosα=43.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sin2α=167. |
|
b) A=3sin2α+cos2α=85. |
|
c) B=5sin2α−3cos2α=21. |
|
d) C=sin2α+cos4α+sin4α+cos2α=9193. |
|
Bạn Khương bản Mộc thống kê số ngày có mưa, có sương mù ở bản mình trong tháng 3 vào một thời điểm nhất định và được kết quả như sau: 14 ngày có mưa, 15 ngày có sương mù, trong đó 10 ngày có cả mưa và sương mù. Trong tháng 3 đó có bao nhiêu ngày không có mưa và không có sương mù?
Trả lời:
Để chuẩn bị cho đại hội chi đoàn 10A1, bạn Nga được phân công đi mua hoa để cắm vào 3 lọ, mỗi lọ cắm số hoa mỗi loại như nhau. Bạn Nga được lớp giao cho 200 nghìn đồng để mua nhưng đến quầy bán chỉ còn 2 loại hoa và đã mua đủ để cắm. Biết rằng một loại hoa có giá 15 nghìn đồng/bông và một loại có giá 20 nghìn/bông. Số tiền dư ra ít nhất có thể là bao nhiêu nghìn đồng?
Trả lời:
Một hộ nông dân dự định trồng đậu và cà trên diện tích 8 ha. Nếu trồng đậu thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng cà thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Để thu về được nhiều tiền nhất nông dân cần trồng a ha đậu và b ha cà, biết rằng tổng số công không quá 180. Tính a+b.
Trả lời:
Gọi a, b lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức L=y−x, với x và y thỏa mãn hệ bất phương trình ⎩⎨⎧2x+3y−6≤02x−3y−1≤0x≥0. Tính 11a+12b.
Trả lời:
Để xác định bán kính của chiếc đĩa cổ hình tròn bị vỡ một phần, các nhà khảo cổ lấy ba điểm A,B,C trên vành đĩa và tiến hành đo đạc thu được kết quả như sau: cạnh AB≈9,5 cm, ACB≈60∘.
Tính bán kính của chiếc đĩa. (Làm tròn kết quả đến chữ số thập phân thứ nhất của đơn vị cm)
Trả lời:
Cho các góc α,β thoả mãn 0∘<α,β<180∘ và α+β=90∘. Tính giá trị của biểu thức T=sin6α+sin6β+3sin2αsin2β.
Trả lời: