Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra cuối học kì I - lớp 12 bộ sách Kết nối tri thức SVIP
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Hàm số y=x3−3x2+4 đồng biến trên mỗi khoảng nào sau đây?
Cho hàm số y=f(x) có đồ thị như hình vẽ sau:
Điểm cực đại của đồ thị hàm số đã cho là
Đồ thị hàm số y=2x+13x−1 có tâm đối xứng là
Cho hình lập phương ABCD.A′B′C′D′. Vectơ nào sau đây có điểm đầu và điểm cuối là đỉnh của hình lập phương ABCD.A′B′C′D′ và bằng AD?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(−1;1;−2),B(1;3;0). Khi đó tọa độ AB bằng
Cho mẫu số liệu số liệu ghép nhóm về thời gian (phút) đi từ nhà đến nơi làm việc của các nhân viên của một công ty như sau:
Thời gian | Số nhân viên |
[15;20) | 6 |
[20;25) | 14 |
[25;30) | 25 |
[30;35) | 37 |
[35;40) | 21 |
[40;45) | 13 |
[45;50) | 9 |
Khoảng biến thiên của mẫu số liệu trên là
Một ý nghĩa của khoảng tứ phân vị là
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;2). Tọa độ điểm A′∈(Oxy) sao cho độ dài đoạn thẳng AA′ ngắn nhất là
Đường cong nào sau đây là đồ thị của hàm số y=x+11−x?




Trên đoạn [−2;2], hàm số y=x2+1mx đạt giá trị lớn nhất tại x=1 khi và chỉ khi
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực A và B.
a) Hai khu vực A và B có mức lương trung bình bằng nhau. |
|
b) Phương sai của mẫu số liệu ở khu vực A lớn hơn 1,5. |
|
c) Độ lệch chuẩn của mẫu số liệu ở khu vực B lớn hơn 1,2. |
|
d) Mức lương khởi điểm của công nhân khu vực B đồng đều hơn của công nhân khu vực A. |
|
Trong không gian, cho tứ diện ABCD. Trên cạnh AD và BC lần lượt lấy các điểm M,N sao cho AM=3MD và BN=3NC. Gọi P,Q lần lượt là trung điểm AD và BC.
a) PQ=AC+DB. |
|
b) MN=MA+AC+CN. |
|
c) MN=MD+DB+BN. |
|
d) BD,AC,MN không đồng phẳng. |
|
Cho hàm số f(x)=x−2−2x+3.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đồng biến trên R\{2}. |
|
b) Đồ thị hàm số cắt trục tung tại điểm M(0;2−3). |
|
c) Đồ thị hàm số y=f(x) cắt đường thẳng y=x−2m tại hai điểm phân biệt khi [m>3m<1. |
|
d) Đồ thị hàm số y=f(x) cắt đường thẳng y=x+2 tại hai điểm phân biệt M và N. Biết I là trung điểm của đoạn thẳng MN. Khi đó hoành độ của điểm I là 1. |
|
Trong bài thực hành của môn huấn luyện quân sự có tình huống chiến sĩ phải bơi qua một con sông để tấn công một mục tiêu ở phía bờ bên kia sông. Biết rằng lòng sông rộng 100 m và vận tốc bơi của chiến sĩ bằng một nửa vận tốc chạy trên bờ. Nếu như dòng sông là thẳng, mục tiêu ở cách chiến sĩ 1 km theo đường chim bay thì người chiến sĩ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? (kết quả làm tròn đến hàng đơn vị)
Trả lời:
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y=(51)x+mmx+1 đồng biến trên khoảng (21;+∞)?
Trả lời:
Với m là một tham số thực thì đồ thị hàm số y=x3−2x2+x−1 và đường thẳng y=m có nhiều nhất bao nhiêu giao điểm?
Trả lời:
Giả sử chi phí cho xuất bản x cuốn tạp chí (gồm: lương cán bộ, công nhân viên, giấy in,...) được cho bởi công thức:
C(x)=0,0001x2−0,2x+10000
trong đó C(x) được tính theo đơn vị là vạn đồng (1 vạn đồng =10000 đồng). Chi phí phát hành cho mỗi cuốn là 4 nghìn đồng. Tỉ số M(x)=xT(x) được gọi là chi phí trung bình cho một cuốn tạp chí khi xuất bản x cuốn và tổng chỉ phí T(x) (xuất bản và phát hành) cho x cuốn tạp chí. Chi phí trung bình thấp nhất cho một cuốn tạp chí là bao nhiêu vạn đồng, biết rằng nhu cầu hiện tại xuất bản không quá 30000 cuốn?
Trả lời:
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc 100∘ và có độ lớn lần lượt là 25 N và 12 N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn 4 N. Tính độ lớn của hợp lực của ba lực trên. (làm tròn đến hàng đơn vị)
Trả lời:
Cho biểu đồ thống kê chiều cao của học sinh nữ lớp 12A:
Tính độ lệch chuẩn của mẫu số liệu trên. (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời: .