tìm số nguyên x,y,z thỏa mãn 2x^3+y^3+4z^3=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


C thuộc Ox nên C(x;0)
CQ=8
=>\(CQ^2=8^2=64\)
=>\(\left(3-x\right)^2+\left(8-0\right)^2=64\)
=>\(\left(3-x\right)^2=0\)
=>3-x=0
=>x=3
=>C(3;0)

a: Tọa độ trung điểm I của AB là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+2}{2}=\dfrac{1}{2}\\y=\dfrac{1+3}{2}=\dfrac{4}{2}=2\end{matrix}\right.\)
=>I(1/2;2)
A(-1;1); B(2;3)
=>\(\overrightarrow{AB}=\left(2+1;3-1\right)\)
=>\(\overrightarrow{AB}=\left(3;2\right)\)
Gọi d là đường trung trực của AB
mà I là trung điểm của AB
nên d\(\perp\)AB tại I
d\(\perp\)AB nên d nhận \(\overrightarrow{AB}=\left(3;2\right)\) làm vecto pháp tuyến
Phương trình d là:
\(3\left(x-\dfrac{1}{2}\right)+2\left(y-2\right)=0\)
=>\(3x+2y-\dfrac{11}{2}=0\)
b: \(A\left(-1;1\right);C\left(1;4\right)\)
=>\(\overrightarrow{AC}=\left(1+1;4-1\right)=\left(2;3\right)\)
=>AC có vecto pháp tuyến là (-3;2)
Phương trình đường thẳng AC là:
-3(x+1)+2(y-1)=0
=>-3x-3+2y-2=0
=>-3x+2y-5=0
c: Tọa độ trung điểm M của AC là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+1}{2}=\dfrac{0}{2}=0\\y=\dfrac{1+4}{2}=\dfrac{5}{2}\end{matrix}\right.\)
Xét ΔABC có
I,M lần lượt là trung điểm của AB,AC
=>IM là đường trung bình của ΔABC
=>IM//BC
I(1/2;2) M(0;5/2)
\(\overrightarrow{IM}=\left(0-\dfrac{1}{2};\dfrac{5}{2}-2\right)=\left(-\dfrac{1}{2};\dfrac{1}{2}\right)=\left(-1;1\right)\)
=>IM có vecto pháp tuyến là (1;1)
Phương trình đường trung bình ứng với cạnh BC là:
1(x-0)+1(y-5/2)=0
=>\(x+y-\dfrac{5}{2}=0\)

Sửa đề: Với a<=m<b thì tập hợp A giao F khác tập rỗng
Để A\(\cap\)F=∅ thì \(\left[\begin{array}{l}2m+9<0\\ 2m-1\ge5\end{array}\right.\Rightarrow\left[\begin{array}{l}2m<-9\\ 2m\ge6\end{array}\right.\Rightarrow\left[\begin{array}{l}m<-\frac92\\ m\ge3\end{array}\right.\)
=>Để A giao F khác rỗng thì \(-\frac92\le m<3\)
=>a=-9/2; b=3
\(P=2a+5b=2\cdot\frac{-9}{2}+5\cdot3=-9+15=6\)

Gọi số phần tử của B là x
(Điều kiện: x∈\(N^{\star}\) )
Để B có đúng 2 tập con thì \(2^{x}=2\)
=>x=1
=>B có duy nhất 1 phần tử
\(x^2-2\left(m+1\right)x+m+3=0\) (1)
\(\Delta=\left\lbrack2\left(m+1\right)\right\rbrack^2-4\left(m+3\right)\)
\(=4\left(m+1\right)^2-4\left(m+3\right)\)
\(=4\left(m^2+2m+1-m-3\right)=4\left(m^2+m-2\right)\)
=4(m+2)(m-1)
Để B có 1 phần tử duy nhất thì phương trình (1) có duy nhất 1 nghiệm
=>Δ=0
=>(m+2)(m-1)=0
=>\(\left[\begin{array}{l}m+2=0\\ m-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=-2\\ m=1\end{array}\right.\)
Khi m=-2 thì (1) sẽ trở thành:
\(x^2-2\left(-2+1\right)x+\left(-2\right)+3=0\)
=>\(x^2+2x+1=0\)
\(\) =>\(\left(x+1\right)^2=0\)
=>x+1=0
=>x=-1
mà -1 không thuộc [1;8]
nên Loại
Khi m=1 thì (1) sẽ trở thành:
\(x^2-2\left(1+1\right)x+1+3=0\)
=>\(x^2-4x+4=0\)
=>\(\left(x-2\right)^2=0\)
=>x-2=0
=>x=2∈[1;8]
=>Nhận
=>m=1 là giá trị m nguyên duy nhất thỏa mãn yêu cầu đề bài
=>Có 1 giá trị m thỏa mãn

Đề ko đúng rồi em, dữ kiện cuối là góc thì phải có 3 điểm chứ

\(x^2-2x+m=0\Leftrightarrow x^2-2x-3=-m-3\)
Từ đồ thị ta thấy:
a.
Phương trình vô nghiệm khi \(-m-3< -4\Rightarrow m>1\)
b.
Phương trình có nghiệm kép khi \(-m-3=-4\Rightarrow m=1\)
c.
Phương trình có 2 nghiệm pb khi:
\(-m-3>-4\Rightarrow m< 1\)
d.
Phương trình có 2 nghiệm pb thuộc \(\left[-1;3\right]\) khi: \(-4< m\le0\)
e.
Có 2 nghiệm pb ko thuộc \(\left[-1;3\right]\) khi \(m>0\)

Vectơ vận tốc trung bình có phương và chiều trùng với vectơ độ dời
Độ lớn của vận tốc trung bình được tính như sau:
$|\overrightarrow{v_{tb}}|=\dfrac{|\overrightarrow{\Delta r}|}{\Delta t}=\dfrac{12}{1}=12$ (m/s)
(Do tam giác tạo bởi các vectơ $\overrightarrow{r_1},\,\overrightarrow{r_2},\,\overrightarrow{\Delta r}$ đều)