Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm SA. Chứng minh thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IBC) là hình thang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OLM chào em và cảm ơn em đã yêu thương và tin tưởng và lựa chọn hệ thống giáo dục olm.vn.
Về vấn đề em hỏi cô xin chia sẻ tới em một vài thông tin như sau:
+ Em cần phải xem kỹ xem yêu cầu đổi quà của em đã thành công hay chưa?
+ Nếu chưa thành công thì tức là em sẽ không nhận được quà vì hệ thống chưa xác nhận yêu cầu đổi quà của em.
+ Nếu yêu cầu đổi quà em đã đực xác thực hệ thống sẽ thông báo tới em là yêu cầu đổi quà thành công.
+ Em cần kiểm tra địa chỉ của em xem đã đúng chưa, tất cả mọi thứ đều chuẩn mực em sẽ nhận được quà từ olm em nhé.
+ Nếu các thông tin em cung cấp không chính xác thì quà sẽ bị gửi lại công ty và em không nhận được quà.
Trên đây là các thông tin mà cô gửi đến em về việc đổi quà, bản thân cô cũng nhận được rất nhiều quà từ olm nên em cứ yên tâm nhá.
A B C D M N P I K K X Y Z
a/
Ta có
M là trọng tâm tg ABC \(\Rightarrow\dfrac{MI}{MA}=\dfrac{1}{2}\)
N là trọng tâm tg ACD \(\Rightarrow\dfrac{NK}{NA}=\dfrac{1}{2}\)
Xét tg AIK có
\(\dfrac{MI}{MA}=\dfrac{NK}{NA}=\dfrac{1}{2}\) => MN//IK (Talet đảo trong tam giác)
Ta có
\(I\in BC;BC\in\left(BCD\right)\Rightarrow I\in\left(BCD\right)\)
\(K\in CD;CD\in\left(BCD\right)\Rightarrow K\in\left(BCD\right)\)
\(\Rightarrow IK\in\left(BCD\right)\) Mà MN//IK (cmt) => MN//(BCD)
Các trường hợp khác c/m tương tự
b/
Trong (ABC) từ M dưng đường thẳng // BC cắt AB; AC tại X và Y
Trong (ACD) nối YN cắt AD tại Z
Xét tg ABC có
\(\dfrac{XB}{XA}=\dfrac{YC}{YA}=\dfrac{MI}{MA}=\dfrac{1}{2}\) (Talet trong tam giác)
XY//BC; \(BC\in\left(BCD\right)\) => XY//(BCD)
Xét tg ACK có
\(\dfrac{YC}{YA}=\dfrac{NK}{NA}=\dfrac{1}{2}\) => YN//CK => YZ//CD
mà \(CD\in\left(BCD\right)\) => YZ//(BCD)
=> (XYZ)//(BCD)
Ta có MP//(BCD); MN//(BCD) => (MNP)//(BCD)
mà \(M\in\left(MNP\right);M\in\left(XYZ\right)\)
\(\Rightarrow\left(MNP\right)\equiv\left(XYZ\right)\) (Từ 1 điểm ngoài 1 mặt phẳng cho trước chỉ có duy nhất 1 mặt phẳng đi qua điểm đã cho và // với mặt phẳng cho trước)
=> (XYZ) là thiết diện của tứ diện ABCD khi cắt bởi (MNP)
Đây cũng là một ý tưởng hay đó em ah. Chúc các em phát triển nhóm và cùng giúp nhau trong cuộc sống, sẽ chia và giúp đỡ nhau cùng tiến bộ. Thân mến!
a) \(\dfrac{1}{\tan\alpha+1}+\dfrac{1}{\cot\alpha+1}\) \(=\dfrac{\tan\alpha+1+\cot\alpha+1}{\left(\tan\alpha+1\right)\left(\cot\alpha+1\right)}\) \(=\dfrac{\tan\alpha+\cot\alpha+2}{\tan\alpha\cot\alpha+\tan\alpha+\cot\alpha+1}\) \(=1\) (vì \(\tan\alpha\cot\alpha=1\))
b) \(\cos\left(\dfrac{\pi}{2}-\alpha\right)-\sin\left(\pi+\alpha\right)\) \(=\sin\left(\alpha\right)-\sin\left(\pi-\alpha\right)\) \(=0\) (do \(\sin\) của 2 cung bù nhau thì bằng nhau, \(\cos\) của 1 góc bằng \(\sin\) của góc phụ với nó).
c) \(\sin\left(\alpha-\dfrac{\pi}{2}\right)+\cos\left(-\alpha+6\pi\right)-\tan\left(\alpha+\pi\right)\cot\left(3\pi-\alpha\right)\)
\(=\cos\left(\pi-\alpha\right)+\cos\left(-\alpha\right)-\tan\alpha\cot\left(\pi-\alpha\right)\)
\(=\tan\alpha\cot\alpha\) \(=1\) (ở đây áp dụng tính chất của 2 cung hơn kém \(\pi\) nhiều lần)
S A B C D I K
Ta có BC//AD (cạnh đối hình bình hành) (1)
Trong mp (SAD) từ I dựng đường thẳng // với AD cắt SD tại K
=>IK//AD (2)
Từ (1) và (2) => IK//BC
\(I\in\left(IBC\right)\Rightarrow IK\in\left(IBC\right)\)
=> BCKI là thiết diện của (IBC) với S.ABCD và BCKI là hình thang
Gọi J là trung điểm của SA. Ta thấy IJ//AD//BC nên J, I, B, C đồng phẳng \(\Rightarrow J\in\left(IBC\right)\).
Ta có \(I=\left(IBC\right)\cap SA,B=\left(IBC\right)\cap SB,C=\left(IBC\right)\cap SC,\) \(J=\left(IBC\right)\cap SD\), suy ra tứ giác BCJI là thiết diện của hình chóp S.ABCD cắt bởi mặt (IBC)
Mà BC//JI (cmt) nên BCJI là hình thang \(\Rightarrowđpcm\)