Cho a, b, C >0 thỏa mãn Ab+bc+ca=1
Cm
(A+1) ^2 (b+1) ^2(c+1) ^2+(a-1) ^2(b-1) ^2(c-1) ^2>=8√3abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=1 vào (d), ta được:
\(1\left(m-3\right)-m+4=1\)
=>m-3-m+4=1
=>1=1(luôn đúng)
Vậy: (d) luôn đi qua A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=\left(m-3\right)x-m+4\)
=>\(x^2-\left(m-3\right)x+m-4=0\)(1)
\(\text{Δ}=\left[-\left(m-3\right)\right]^2-4\cdot1\cdot\left(m-4\right)\)
\(=m^2-6m+9-4m+16=m^2-10m+25=\left(m-5\right)^2\)
Để (d) cắt (P) tại hai điểm phân biệt thì Δ>0
=>\(\left(m-5\right)^2>0\)
=>\(m-5\ne0\)
=>\(m\ne5\)
Khi m<>5 thì phương trình (1) sẽ có 2 nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{m-3-\sqrt{\left(m-5\right)^2}}{2}=\dfrac{m-3-\left(m-5\right)}{2}=\dfrac{m-3-m+5}{2}=1\\x=\dfrac{m-3+\left(m-5\right)}{2}=\dfrac{2m-8}{2}=m-4\end{matrix}\right.\)
Để x1,x2 là độ dài 2 cạnh của một tam giác vuông cân thì m-4=1
=>m=5(loại)
Gọi số dãy ghế ban đầu là \(x\left(x\inℕ^∗,x\le238\right)\) thì số ghế mỗi dãy là \(\dfrac{238}{x}\) \(\Rightarrow238⋮x\) \(\Rightarrow x\in\left\{1,2,7,14,17,34,119,238\right\}\)
Theo đề bài, ta có:
\(\left(x+3\right)\left(\dfrac{238}{x}-3\right)=238\)
\(\Leftrightarrow238-3x+\dfrac{714}{x}-9=238\)
\(\Leftrightarrow3x-\dfrac{714}{x}+9=0\)
\(\Leftrightarrow x^2+3x-238=0\)
\(\Leftrightarrow\left(x+17\right)\left(x-14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-17\left(loại\right)\\x=14\left(nhận\right)\end{matrix}\right.\)
Vậy ban đầu phòng họp được chia làm 14 dãy ghế.
Ba phần tư giá niêm yết là:
\(300\text{ }000.\dfrac{3}{4}=225\text{ }000\) (đồng)
Giá gốc của chiếc áo là:
\(225\text{ }000:\left(100\%+25\%\right)=180\text{ }000\) (đồng)
Gọi x (đồng) là giá niêm yết để cửa hàng lãi 40%, ta có:
\(\dfrac{x-180\text{ }000}{180\text{ }000}.100\%=40\%\)
\(\Leftrightarrow x-180\text{ }000=72\text{ }000\)
\(\Leftrightarrow x=252\text{ }000\) (đồng)
Giải:
Giá chiếc áo nếu chỉ bán bằng \(\dfrac{3}{4}\) giá niêm yết là:
300 000 x \(\dfrac{3}{4}\) = 225 000 (đồng)
225 000 đồng ứng với:
100% + 25% = 125% (giá gốc)
Giá gốc của chiếc áo là:
225 000 : 125 x 100 = 180 000 (đồng)
Để lãi 40% giá gốc thì cần bán chiếc áo với giá là:
180 000 x (100% + 40%) = 252 000 (đồng)
Kết luận:...
Hỏi ban đầu phòng họp được chi là sao em nhỉ?
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)
Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
Do \(x_2\) là nghiệm của pt nên: \(x_2^2-mx_2+m-2=0\)
\(\Rightarrow x_2^2=mx_2-\left(m-2\right)\)
\(\Rightarrow x_2^3=mx_2^2-\left(m-2\right)x_2\)
Thay vào bài toán:
\(mx_1^2+mx_2^2-\left(m-2\right)x_2+\left(m-2\right)x_2=3\)
\(\Leftrightarrow m\left(x_1^2+x_2^2\right)=3\)
\(\Leftrightarrow m\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=3\)
\(\Leftrightarrow m\left(m^2-2\left(m-2\right)\right)=3\)
\(\Leftrightarrow m^3-2m^2+4m-3=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2-m+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m^2-m+3=0\left(vn\right)\end{matrix}\right.\)
Do I là trung điểm MN \(\Rightarrow OI\perp MN\) \(\Rightarrow\widehat{OIA}=90^0\)
Do AB, AC là các tiếp tuyến \(\Rightarrow\widehat{OBA}=\widehat{OCA}=90^0\)
\(\Rightarrow I,B,C\) cùng nhìn OA dưới 1 góc vuông nên 5 điểm O, I, B, A, C cùng thuộc 1 đường tròn đường kính OA
Theo t/c 2 tiếp tuyến cắt nhau ta có: \(AB=AC\)
\(\Rightarrow\widehat{BIA}=\widehat{CIA}\) (2 góc nt chắn 2 cung bằng nhau của đường trònđường kính OA)
\(\Rightarrow IA\) là phân giác của BIC
I K Q O P H
Xét (O) có
sđ cung IQ = sđ cung KQ (gt)
=> IQ=KQ => tg IQK cân tại Q
OI=OK (bán kính (O))
\(\Rightarrow OQ\perp IK\) (trong tam giác cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
\(\Rightarrow\widehat{QOK}=90^o\)
Ta có
\(\widehat{IPK}=90^o\) (góc nội tiếp chắn nửa đường tròn)
=> O và P cùng nhìn HK dưới 2 góc bằng nhau và bằng 90 độ
=> O và P thuộc đường tròn đường kính HK => OKPH là tứ giác nội tiếp
b/
Xét tg HIK có
\(OH\perp IK;OI=OK\) => tg HIK cân tại H (tam giác có đường cao đồng thời là đường trung tuyến thì đó là tg cân)
\(\Rightarrow\widehat{KIP}=\widehat{HKI}\) (góc ở đáy tg cân)
Ta có
\(\widehat{PHK}=\widehat{KIP}+\widehat{HKI}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)
\(\Rightarrow\widehat{PHK}=2\widehat{KIP}\Rightarrow\widehat{KIP}=\dfrac{1}{2}\widehat{PHK}\)
Câu 10:
\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(4m-3\right)\)
\(=4m^2-16m+12=4\left(m^2-4m+3\right)=4\left(m-3\right)\left(m-1\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>4(m-3)(m-1)>0
=>(m-3)(m-1)>0
=>\(\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\)