giúp mk câu này với !!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Người ta sử dụng BĐT Cô-si cho mẫu số:
\(cos^2a+2sin^2a\ge2\sqrt{cos^2a.2sin^2a}=2\sqrt{2}\left|sina.cosa\right|\ge2\sqrt{2}sina.cosa\)
Nhưng trong trường hợp bài này chỉ áp dụng được khi \(sina.cosa>0\)
\(đặt:\sqrt[3]{x^2+5x-2}=t\)
\(x\left(x+5\right)-2\sqrt[3]{x^2+5x-2}+2=0\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)\(pt\Leftrightarrow t^3-2t+4=0\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-2\\t^2-2t+2=\left(t-1\right)^2+1>0\left(vônghiem\right)\end{matrix}\right.\)
\(t=-2=\sqrt[3]{x^2+5x-2}\Leftrightarrow-8=x^2+5x-2\Leftrightarrow x^2+5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
1.
\(y=3x+1\Leftrightarrow3x-y+1=0\)
d có vtcp là (1;3) và vtpt là (3;-1)
2.
\(y=-\dfrac{1}{2}x\Rightarrow x+2y=0\)
d có vtcp là (2;-1) và vtpt là (1;2)
3.
d có vtcp là (1;0) và vtpt là (0;1)
4.
d có vtcp là (0;1) và vtpt là (1;0)
ta có
\(2x^2-2x+1>\sqrt{x^2-x+1}\) Đặt \(\sqrt{x^2-x+1}=a\Rightarrow x^2-x=a^2-1\)
Vậy ta có :
\(2\left(a^2-1\right)+1>a\Leftrightarrow2a^2-a-1>0\Leftrightarrow\left(2a+1\right)\left(a-1\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}a< -\frac{1}{2}\\a>1\end{cases}\text{ mà }a\ge0\Rightarrow a>1}\)
\(\Leftrightarrow\sqrt{x^2-x+1}>1\Leftrightarrow x^2-x>0\Leftrightarrow\orbr{\begin{cases}x>1\\x< 0\end{cases}}\)
Đặt \(\sqrt{x^2-x+1}=t>0\Rightarrow x\left(x-1\right)=t^2-1\)
BPT trở thành:
\(2\left(t^2-1\right)+1>t\)
\(\Leftrightarrow2t^2-t-1>0\)
\(\Leftrightarrow\left(t-1\right)\left(2t+1\right)>0\)
\(\Leftrightarrow t-1>0\) (do \(t>0\Rightarrow2t+1>0\))
\(\Rightarrow t>1\)
\(\Rightarrow\sqrt{x^2-x+1}>1\)
\(\Leftrightarrow x^2-x>0\)
\(\Rightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)