Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D E F M N I R
a, có DM _|_ EF và EN _|_ DF (gt)
=> ^IMF = ^INF = 90
=> M;N thuộc đường tròn đường kính IF (Định lí)
=> F;N;I;M thuộc đường tròn đk IF
b, có DM _|_ EF và EN _|_ DF (gt)
=> ^END = ^DME = 90
=> N;M thuộc đường tròn đk DE
=> D;N;M;E cùng thuộc đường tròn đk DE
có : \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\Leftrightarrow x-2\sqrt{xy}+y\ge0\)
\(\Leftrightarrow2x+2y\ge x+2\sqrt{xy}+y\)
\(\Leftrightarrow2\left(x+y\right)\ge\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(\Leftrightarrow\sqrt{2}\cdot\sqrt{x+y}\ge\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\sqrt{x+y}\ge\frac{\sqrt{x}+\sqrt{y}}{\sqrt{2}}\)
áp dụng vào ta có :
\(\sqrt{\frac{a+b}{c}}=\sqrt{\frac{a}{c}+\frac{b}{c}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{a}{c}}+\sqrt{\frac{b}{c}}\right)\)
\(\sqrt{\frac{b+c}{a}}=\sqrt{\frac{b}{a}+\frac{c}{a}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{a}}\right)\)
\(\sqrt{\frac{c+a}{b}}=\sqrt{\frac{c}{b}+\frac{a}{b}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{b}}\right)\)
\(\Rightarrow VT\ge\frac{1}{\sqrt{2}}\left[\sqrt{a}\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)+\sqrt{b}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{c}}\right)+\sqrt{c}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\right]\)
áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có :
\(VT\ge\frac{1}{\sqrt{2}}\left(\sqrt{a}\cdot\frac{4}{\sqrt{b}+\sqrt{c}}+\sqrt{b}\cdot\frac{4}{\sqrt{a}+\sqrt{c}}+\sqrt{c}\cdot\frac{4}{\sqrt{a}+\sqrt{b}}\right)\)
có \(\hept{\begin{cases}\sqrt{b}+\sqrt{c}\le\sqrt{2\left(b+c\right)}\\\sqrt{a}+\sqrt{c}\le\sqrt{2\left(a+c\right)}\\\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\end{cases}}\) nên \(\hept{\begin{cases}\frac{4}{\sqrt{b}+\sqrt{c}}\ge\frac{4}{\sqrt{2\left(b+c\right)}}\\\frac{4}{\sqrt{a}+\sqrt{c}}\ge\frac{4}{\sqrt{2\left(a+c\right)}}\\\frac{4}{\sqrt{a}+\sqrt{b}}\ge\frac{4}{\sqrt{2\left(a+b\right)}}\end{cases}}\)
\(\Rightarrow vt\ge2\cdot\left(\sqrt{\frac{a}{c+b}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+a}}\right)\)
dấu = xảy ra khi a=b=c
ĐKXĐ : a > 1
\(\frac{\sqrt{a+1}}{\sqrt{a^2-1}-\sqrt{a^2+a}}+\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{\sqrt{a^3}-a}{\sqrt{a}-1}\)
\(=\frac{\sqrt{a+1}}{\sqrt{a+1}\left(\sqrt{a-1}-\sqrt{a}\right)}+\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}\)
\(=\frac{1}{\sqrt{a-1}-\sqrt{a}}+\frac{1}{\sqrt{a-1}+\sqrt{a}}+a+\sqrt{a}+1\)
\(=\frac{\sqrt{a-1}+\sqrt{a}+\sqrt{a-1}-\sqrt{a}}{-1}+a+\sqrt{a}+1\)
\(=-2\sqrt{a-1}+a+\sqrt{a}+1\)