K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

asinA=bsinB=2R⇒{sinA=a2RsinB=b2Rasin⁡A=bsin⁡B=2R⇒{sin⁡A=a2Rsin⁡B=b2R

c2=a2+b2−2bacosC⇒cosC=a2+b2−c22abc2=a2+b2−2bacos⁡C⇒cos⁡C=a2+b2−c22ab

dt⇔a2R=2.b2R.a2+b2−c22abdt⇔a2R=2.b2R.a2+b2−c22ab

⇔a=a2+b2−c2a⇔a2=a2+b2−c2⇔a=a2+b2−c2a⇔a2=a2+b2−c2

⇒b2=c2⇒b=c⇒b2=c2⇒b=c

Vậy tam giác ABC cân tại A

23 tháng 3 2022

asinA=bsinB=2R⇒{sinA=a2RsinB=b2Rasin⁡A=bsin⁡B=2R⇒{sin⁡A=a2Rsin⁡B=b2R

c2=a2+b2−2bacosC⇒cosC=a2+b2−c22abc2=a2+b2−2bacos⁡C⇒cos⁡C=a2+b2−c22ab

dt⇔a2R=2.b2R.a2+b2−c22abdt⇔a2R=2.b2R.a2+b2−c22ab

⇔a=a2+b2−c2a⇔a2=a2+b2−c2⇔a=a2+b2−c2a⇔a2=a2+b2−c2

⇒b2=c2⇒b=c⇒b2=c2⇒b=c

Vậy tam giác ABC cân tại A

9 tháng 4 2022

`Answer:`

a) \(a^2=b^2+c^2-2bc\cos A\)

\(2S=bc.\sin A\)

\(\Rightarrow2bc=\frac{4S}{\sin A}\)

\(\Rightarrow a^2=b^2+c^2-\frac{4S\cos A}{\sin A}=b^2+c^2-4S\cot A\)

\(\Rightarrow\cot A=\frac{b^2+c^2-a^2}{4S}\)

23 tháng 3 2022

tau chịu

23 tháng 3 2022

mình không biết

9 tháng 4 2022

`Answer:`

a) Áp dụng định lý \(\sin\), ta có:

\(\sin A=\frac{a}{2R};\sin B=\frac{b}{2R};\sin C=\frac{c}{2R}\)

\(\Rightarrow\sin^2A=\sin B.\sin C\)

\(\Leftrightarrow\left(\frac{a}{2R}\right)^2=\frac{b}{2R}.\frac{c}{2R}\)

\(\Leftrightarrow a^2=bc\)

b) Áp dụng định lý Cosin và phần a), ta có:

\(\cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-bc}{2bc}\ge\frac{2bc-bc}{2bc}=\frac{1}{2}\)