K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7

Bài 9:

Thể tích của một hình lập phương là:

\(1\cdot1\cdot1=1\) (đvtt) 

Thể tích của hình hộp chữ nhật là:

\(12\cdot6\cdot5=360\) (đvtt) 

Số hình lập phương là:

\(360:1=360\) (hình) 

10 tháng 7

Bài 6:

Chiều dài của hình đó là:

\(1\times4=4\)

Chiều rộng của hình đó là:

\(1\times2=2\)

Chiều cao của hình đó là:

\(1\times2=2\)

Hình đó có số đơn vị diện tích là: 

\(2\times\left(2+4\right)\times2+2\times2\times4=40\) (đvdt) 

Hình đó có số đơn vị thể tích là:

\(4\times2\times2=16\left(đvtt\right)\)

a: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)

\(=2\cdot\dfrac{1}{2}\cdot xy^2\cdot x^3y^2=x^4y^4\)

b: Bậc là 8

c: \(A=x^4y^4\)

Hệ số là 1

Phần biến là \(x^4;y^4\)

d: Khi x=1 và y=-1 thì \(A=1^4\cdot\left(-1\right)^4=1\)

e: \(x^4>0\forall x\ne0;y^4>0\forall y\ne0\)

Do đó: \(x^4\cdot y^4>0\forall x,y\ne0\)

=>A luôn dương khi x,y đều khác 0

9 tháng 7

a) 

\(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\\ =\left(2\cdot\dfrac{1}{2}\right)\cdot\left(x\cdot x^2\cdot x\right)\cdot\left(y^2\cdot y^2\right)\\ =x^4y^4\)

b) Bậc: 4 + 4 = 8

c) Hệ số là: 1

Phần biến là: `x^4y^4` 

d) Thay x = 1 và  y = -1 vào A ta có:

\(A=1^4\cdot\left(-1\right)^4=1\cdot1=1\)

e) Ta có: \(\left\{{}\begin{matrix}x^4>0\forall x>0\\y^4>0\forall y>0\end{matrix}\right.=>A=x^4y^4>0\cdot0=0\forall x,y>0\)

=> A luôn nhận giá trị nguyên khi x,y khác 0

AH
Akai Haruma
Giáo viên
9 tháng 7

Lời giải:
\(B=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-99}{100}\\ =-\frac{3.8.15...99}{4.9...100}\) (do $B$ có lẻ các thừa số)

\(=-\frac{(1.3)(2.4)(3.5)...(9.11)}{2^2.3^2.4^2...10^2}\)

\(=-\frac{(1.2.3...9)(3.4.5...11)}{(2.3....10)(2.3.4...10)}\\ =-\frac{1.2.3...9}{2.3.4...10}.\frac{3.4.5...11}{2.3.4...10}\\ =-\frac{1}{10}.\frac{11}{2}=\frac{-11}{20}< \frac{-11}{21}\)

b: \(\dfrac{2}{5}-\left(\dfrac{4}{3}+\dfrac{4}{5}\right)-\left(-\dfrac{1}{9}-0,4\right)+\dfrac{11}{9}\)

\(=\dfrac{2}{5}-\dfrac{4}{3}-\dfrac{4}{5}+\dfrac{1}{9}+\dfrac{2}{5}+\dfrac{11}{9}\)

\(=\left(\dfrac{2}{5}-\dfrac{4}{5}+\dfrac{2}{5}\right)+\left(-\dfrac{4}{3}+\dfrac{1}{9}+\dfrac{11}{9}\right)\)

\(=-\dfrac{4}{3}+\dfrac{12}{9}=0\)

c: \(\dfrac{11}{8}\cdot\left[\left(-\dfrac{5}{11}:\dfrac{13}{8}-\dfrac{5}{11}:\dfrac{13}{5}\right)+\dfrac{-6}{33}\right]+\dfrac{3}{4}\)

\(=\dfrac{11}{8}\cdot\left[-\dfrac{5}{11}\cdot\dfrac{8}{13}-\dfrac{5}{11}\cdot\dfrac{5}{13}+\dfrac{-2}{11}\right]+\dfrac{3}{4}\)

\(=\dfrac{11}{8}\cdot\left[-\dfrac{5}{11}\left(\dfrac{8}{13}+\dfrac{5}{13}\right)-\dfrac{2}{11}\right]+\dfrac{3}{4}\)

\(=\dfrac{11}{8}\cdot\dfrac{-7}{11}+\dfrac{3}{4}=-\dfrac{7}{8}+\dfrac{3}{4}=-\dfrac{1}{8}\)

a:\(\widehat{BAC}+\widehat{xAC}=180^0\)(hai góc kề bù)

=> \(\widehat{BAC}+70^0=180^0\)

=>\(\widehat{BAC}=110^0\)

Ta có: \(\widehat{BAC}+\widehat{ABD}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AC//BD

b: Vì AC//BD

nên \(\widehat{yCx}=\widehat{CDB}\)(hai góc đồng vị)

=>\(\widehat{yCx}=60^0\)

Ta có: \(\widehat{yCx}+\widehat{ACD}=180^0\)(hai góc kề bù)

=>\(\widehat{ACD}+60^0=180^0\)

=>\(\widehat{ACD}=120^0\)

Ta có: \(\widehat{BAC}+\widehat{ABD}=180^0\)(AC//BD)

=>\(\widehat{BAC}+70^0=180^0\)

=>\(\widehat{BAC}=110^0\)

1

e: \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

=>\(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)

=>\(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

=>x+1=0

=>x=-1

a: \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot5^n\)

=>\(2^n\cdot\left(\dfrac{1}{2}+4\right)=5^n\cdot9\)

=>\(2^n\cdot\dfrac{9}{2}=5^n\cdot9\)

=>\(2^{n-1}=5^n\)

=>\(n-1=n\cdot log_25\)

=>\(n\left(1-log_25\right)=1\)

=>\(n=\dfrac{1}{1-log_25}\)

 

10 tháng 7

\(\dfrac{x-10}{30}+\dfrac{x-14}{43}+\dfrac{x-5}{95}+\dfrac{x-148}{8}=0\\ \Rightarrow\left(\dfrac{x-10}{30}-3\right)+\left(\dfrac{x-14}{43}-2\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-148}{8}+3\right)=0\\ \Rightarrow\dfrac{x-100}{30}+\dfrac{x-100}{43}+\dfrac{x-100}{95}+\dfrac{x-100}{8}=0\\ \Rightarrow\left(x-100\right)\left(\dfrac{1}{30}+\dfrac{1}{43}+\dfrac{1}{95}+\dfrac{1}{8}\right)=0\\ \Rightarrow x-100=0\\ \Rightarrow x=100\)

AH
Akai Haruma
Giáo viên
9 tháng 7

Bạn lưu ý, khi đăng đề thì đăng đầy đủ đề (bao gồm cả điều kiện và yêu cầu).

Đề yêu cầu tìm $x,y$?

$x,y$ là số như thế nào? Số nguyên? Số tự nhiên?

Bạn nên ghi rõ ra để mọi người hỗ trợ nhanh hơn nhé. 

10 tháng 7

\(x+2xy-2y=5\)

\(x+2y\times\left(x-1\right)=5\)

\(\left(x-1\right)+2y\times\left(x-1\right)=5-1\)

\(\left(x-1\right)\times\left(2y+1\right)=4\)

Ta có: 4 = (-1) x (-4) = (-2) x (-2) = 2 x 2 = 1 x 4

Ta lập bảng:

x - 1 1 -1 2 -2 4 -4
x 2 0 3 -1 5 -3
2y + 1 4 -4 2 -2 1 -1
y X X X X 0 -1

⇒ (x; y) ϵ {(5; 0); (-3; -1)}