a) \(^{x^2}\)-3
b)\(^{x^2}\)+\(\sqrt{3x+3}\)
c) \(x^{2-2\sqrt{ }5x+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, \(\sqrt{0,09}=\sqrt{\frac{9}{100}}=\frac{3}{10}\)
b, \(\sqrt{-16}\)vô lí vì \(\sqrt{a}\)xảy ra khi a >= 0 mà -16 < 0
c, \(\sqrt{0,25}.\sqrt{0,16}=\sqrt{\frac{25}{100}}.\sqrt{\frac{16}{100}}=\frac{5}{10}.\frac{4}{10}=\frac{20}{100}=\frac{1}{5}\)
e, \(\sqrt{\frac{4}{25}}=\frac{2}{5}\); f, \(\frac{6\sqrt{16}}{5\sqrt{0,04}}=\frac{24}{5\sqrt{\frac{4}{100}}}=\frac{24}{\frac{10}{10}}=24\)
g, \(\sqrt{0,36}-\sqrt{0,49}=\sqrt{\frac{36}{100}}-\sqrt{\frac{49}{100}}=\frac{6}{10}-\frac{7}{10}=-\frac{1}{10}\)
a, \(\sqrt{x-6}=13\)ĐK : x >= 6
\(\Leftrightarrow x-6=169\Leftrightarrow x=175\)
b, \(\sqrt{x^2-2x+4}=x-1\Leftrightarrow x^2-2x+4=x^2-2x+1\)
\(\Leftrightarrow4=1\)( vô lí ), vậy pt vô nghiệm
c, \(\sqrt{x^2-8x+16}=9x-1\Leftrightarrow\left|x-4\right|=9x-1\)
ĐK : x >= 1/9
TH1 : \(x-4=9x-1\Leftrightarrow-8x=3\Leftrightarrow x=-\frac{3}{8}\)( ktm )
TH2 : \(x-4=1-9x\Leftrightarrow10x=5\Leftrightarrow x=\frac{1}{2}\)( tm )
c, \(\sqrt{x^2-x-4}=\sqrt{x-1}\Leftrightarrow x^2-x-4=x-1\)
\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow x=3;x=-1\)
e, \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)
TH1 : \(x-2=2x-3\Leftrightarrow x=1\)
TH2 : \(x-2=3-2x\Leftrightarrow3x=5\Leftrightarrow x=\frac{5}{3}\)
g, \(\sqrt{x+2\sqrt{x-1}}=2\)ĐK : x > = 1
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
TH1 : \(\sqrt{x-1}+1=2\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
TH2 : \(\sqrt{x-1}+1=-2\)( vô lí )
\(A=\frac{4\sqrt{x}}{\sqrt{x}+3}\left(\frac{x}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}+15}{x-9}\right)\)ĐK : \(x\ge0;x\ne9\)
\(=\frac{4\sqrt{x}}{\sqrt{x}+3}\left(\frac{x\sqrt{x}-3x+x+3\sqrt{x}+\sqrt{x}+15}{x-9}\right)\)
\(=\frac{4\sqrt{x}}{\sqrt{x}+3}\left(\frac{x\sqrt{x}-2x+4\sqrt{x}+15}{x-9}\right)\)
\(2a-2\sqrt{a}=2\sqrt{a}\left(\sqrt{a}-1\right)\)
Chúc học tốt
ĐK \(x\le2\)Đặt \(\sqrt{2-x}=t\Rightarrow2-x=t^2\)\(\Rightarrow x=2-t^2\)ta có
\(N=2-t^2+t\)\(=-\left(t^2-2t\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}=-\left(t-\frac{1}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}\)
Vì \(-\left(t-\frac{1}{2}\right)^2\le0\)
Dấu = xảy ra khi và chỉ khi \(t-\frac{1}{2}=0\Rightarrow t=\frac{1}{2}\Rightarrow\sqrt{2-x}=\frac{1}{2}\Leftrightarrow2-x=\frac{1}{4}\Rightarrow x=\frac{7}{4}\)tmđk
Vậy MaxN=9/4 <=> x=7/4
\(A=\sqrt{9x^2-12x+4}+1-3x=\sqrt{\left(3x-2\right)^2}+1-3x\)
\(=\left|3x-2\right|+1-3x\)Thay x = 1/3 vào A ta được :
\(=\left|\frac{1}{3}.3-2\right|+1-\frac{3.1}{3}=1+1-1=1\)