có a,b,c là các số dương thỏa mãn abc=8. tìm Min của B=(a+b)(b+c)(c+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì y2 luôn lớn hơn hoặc bằng 0 nên 5.y2 cũng luôn lớn hơn hoặc bằng 0
=> 6x2 < 74 => x2 < 74/6 <13
vì x nguyên nên x2 có thể nhận các giá trị 0; 1; 4; 9
x2 = 0 => 5y2 = 74 => y2 = 74/5 loại vì y nguyên
x2 = 1 => 5y2 = 68 => y2 = 68/5 loại vì y nguyên
x2 = 4 => 5y2 = 50 => y2 = 10 => loại
x2 = 9 => 5y2 = 20 => y2 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2);
vì y2
luôn lớn hơn hoặc bằng 0 nên 5.y
2
cũng luôn lớn hơn hoặc bằng 0
=> 6x2
< 74 => x2
< 74/6 <13
vì x nguyên nên x2
có thể nhận các giá trị 0; 1; 4; 9
x
2
= 0 => 5y2
= 74 => y2
= 74/5 loại vì y nguyên
x
2
= 1 => 5y2
= 68 => y2
= 68/5 loại vì y nguyên
x
2
= 4 => 5y2
= 50 => y2
= 10 => loại
x
2
= 9 => 5y2
= 20 => y2
= 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2)
:3
x3 + y3 = (x+y)(x2 + y2 -xy) =x2 + y2 -xy = (x+y)2 -3xy = 1-3xy=a
x5 + y5 = (x+ y)(x4 -x3.y + x2y2 - xy3 + y4) = (x4 + y4 + x2y2) - (x3.y + xy3) = (x2 + y2)2 - x2y2 - xy (x2 + y2)
= [(x+y)2 - 2xy]2 - x2y2 -xy [(x+y)2 -2xy] = (1-2xy)2 - x2y2 -xy(1-2xy) = 4x2y2 -4xy +1 - x2y2 - xy+ 2x2y2
= 5x2y2 -5xy +1 = b
xét 5a(a+1) = 5(1-3xy)(1-3xy+1) = 5(1-3xy)(2-3xy) = 5 (2-9xy+ 9x2y2) = 10 - 45xy + 5x2y2 = 9( 5x2y2 -5xy +1 ) + 1 = 9b + 1
=> đpcm
Gọi 3 số tự nhiên lẻ liên tiếp lần lượt là 2n -1; 2n + 1; 2n+3 ( n thuộc N )
theo đề bài ta có: (2n-1)2 + (2n+1)2 + (2n+3)2 = aaaa (trong đó a là chữ số lẻ vì 3 số lẻ nên tổng các bình phương của chúng cũng lẻ)
=> 12n2 + 12n + 11 = 1111. a
=> 12n(n+1) = 1111.a -11 => 12n(n+1) = 11(101.a - 1)
Nhận xét : vé trái là 1 số chia hết cho 3 => vế phải cũng phải chia hết cho 3 mà 11 không chia hết cho 3 => 101.a -1 chia hết cho 3
101.a - 1 = 102.a - (a+1) => a+ 1 chia hết cho 3; a là chữ số
=> a = 2 hoặc 5; 8. Vì a lẻ nên a = 5. thay vào (*)
=> 12n(n+1) = 5544 => n(n+1)= 462 => n2 +n -462 = 0 => n2 +22.n - 21n -462 = 0
=> n(n+22) - 21(n+22) = 0
=> (n+22)(n-21) = 0 => n= 21 hoặc -22 .vì n thuộc N nên n =21
vậy 3 số cần tìm là 41;43;45
5(a+2007)3 + 15 (a+ 2007)2 + 10(a+2007)
=5(a+2007)3 + 5 (a+ 2007)2 + 10(a+ 2007)2 + 10(a+2007) = 5(a+2007)2 [ (a+ 2007) +1] +10(a+2007) [(a+2007) + 1]
=5(a+2007)2 (a+ 2008) +10(a+2007)(a+2008) = 5(a+2007)(a+2008) (a+2007 +2) = 5(a+2007)(a+2008) (a+2009)
nhận xét : tích trên chia hết cho 5
và a+2007; a+2008 ; a+2009 là các số nguyên liên tiếp nên tích của chúng chia hết cho 6
=> 5(a+2007)(a+2008) (a+2009) chia hết cho BCNN(5;6) = 30 => đpcm