Cho ( O; R), đường kính BC. A là điểm di chuyển trên (O).
a) trường hợp AB=R . Tính AC theo R và số đo góc B, số đo góc C của tam giác ABC
b) Tìm vị trí điểm A trên (O) để diện tích tam giác ABC đạt giá trị lớn nhất. Tình giá trị ấy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ chứng minh được \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)
\(\Rightarrow2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow a+b+c\le6\)
Ta có : \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
\(=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)
\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(\le3-\frac{9}{a+b+c+3}\le3-\frac{9}{6+3}=2\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Từ M kẻ ME vuông góc với AB,MF vuông góc với AC.
Ta có ΔEBM vuông cân tại E, ΔFMC vuông cân tại F và AEMF là hình chữ nhật.
Áp dụng định lý Pytago vào các tam giác EBM,FMC,AEF ta có:
BM^2 = EM^2 + BE^2 = 2.ME^2 ; MC^2 = 2.FM^2 ⇒ BM^2 + MC^2 = 2.(ME^2 + MF^2) (1)
Mà AM^2 = EF^2 = ME^2 + MF^2 (2)
Từ (1),(2) ta được 2AM^2 = MB^2 + MC^2